Supplementary Information

Realizing Low-voltage Operating Crystalline Monolayer Organic Field-effect Transistors with Low Contact Resistance

Longfeng Jiang,ab Jie Liu,a* Yanjun Shi,b Danlei Zhu,b Hantang Zhang,abc Yuanyuan Hu,d Junsheng Yu,a Wenping Hud and Lang Jianga*

a State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China

b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

c College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China

d Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, Hunan University, Changsha 410082, China

e Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

*Corresponding author. E-mail address: liujie2009@iccas.ac.cn, htzhang@iccas.ac.cn, ljiang@iccas.ac.cn.
Figure S1. AFM image of HTEB 2D molecular crystals on Si/SiO₂ with layer-by-layer structure.
Figure S2. HR-AFM image and corresponding 2D FFT pattern of the HTEB multilayer crystal on Si/SiO$_2$. Lattice constants were estimated to be $b = 6.0$ Å, $c = 7.8$ Å and $\theta = 85.9^\circ$.
Figure S3. (a) Transfer curves, (b) output curves, (c) G-function curves and (d) extracted R_c curves of the four HTEB MMC devices fabricated on Si/SiO$_2$ with channel length of 85.3 μm, 42.9 μm, 28.0 μm and 9.7 μm, respectively.
Figure S4. (a) Transfer curves, (b) output curves, (c) G-function curves and (d) extracted R_c curves of the four HTEB 4-layer single-crystal devices fabricated on Si/SiO$_2$ with channel length of 86.8 μm, 54.1 μm, 22.3 μm and 9.2 μm, respectively.
Figure S5. (a) Transfer curves, (b) output curves, (c) G-function curves and (d) extracted R_c curves of the four HTEB 15-layer single-crystal devices fabricated on Si/SiO$_2$ with channel length of 96.7 μm, 54.8 μm, 27.4 μm and 8.8 μm, respectively.
Figure S6. HTEB 4-layer crystal on HfO$_2$ insulator layer. (a) AFM image of HTEB 4-layer crystal, (b) OM image, (c) transfer curve and (d) output curve of the 4-layer single-crystal OFET with $L = 1.5 \ \mu$m and $W = 83.5 \ \mu$m. (e) $R_{\text{total}}W$ as a function of channel length for 4-layer single-crystal OFETs at $V_G = -2 \ \text{V}$. (f) R_c/R_{total} as the function of channel length for monolayer and 4-layer single-crystal OFETs.