Low-Temperature Synthesis of All-Inorganic Perovskite Nanocrystals for UV-Photodetectors

Hao Zhang, † Zihan Zhang, †† Chao Ma, † Yuquan Liu, ‡ Haipeng Xie, ‡ Shiqiang Luo, ‡ Yongbo Yuan, ‡ Yongli Gao, § Yong Zhang, †† Wenquan Ming, †† Yi Liu, ‡ Anlian Pan, ††, †††† Wenquan Ming, †††† Yil Li, †††† Anlian Pan, †††† Bin Yang, ††††

† †These authors contributed equally to this work

E-mail: yangb1@hnu.edu.cn; anlian.pan@hnu.edu.cn

†††† College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China

‡‡ Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

§§ Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States

†††† Center for High Resolution Electron Microscopy, Hunan University, Changsha, Hunan 410082, China

‡‡‡‡ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

†††† Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, Hunan 410082, China

‡‡‡‡ Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan 410082, China

†††† Keywords: metal halide perovskites; nanocrystals; hot-injection synthesis; photodetectors
Figure S1. Absorbance (a) and photoluminescence (PL) (b) spectra of solutions of CsPb$_{0.966}$Sn$_{0.034}$Br$_3$ (black) and CsPbBr$_3$ (red) nanocrystals obtained under identical conditions at 135 °C.
Figure S2. Morphology revealed by HAADF-STEM image of nanocrystals without Sn synthesized at 135 °C.
Figure S3. Cross section SEM image to show the thickness of each layer of the device.
Figure S4. J-V curves measured under dark and illumination of 100 mW/cm².
Figure S5. Bias-free EQE as a function of wavelength collected at 0 V.
Figure S6. Absorbance of C$_{60}$, PC$_{60}$BM, and CsPb$_{0.966}$Sn$_{0.034}$Br$_3$ nanocrystal films.
Figure S7. the EQE curves at 0 to -4 V acquired from the device with an architecture of ITO/PEDOT:PSS/PVK/CsPb$_{0.966}$Sn$_{0.034}$Br$_3$: PMMA/PC$_{60}$BM/C$_{60}$/BCP/Al.
Figure S8. Variation of EQE curves with changing bias from 0 to -6 V acquired from the Sn-free nanocrystal based device.
Figure S9. Variation of photoresponsivity curves with changing bias from 0 to -9 V.
Table S1. Summary of growth temperature, doping ratio, nanocrystal size, and standard deviation for each condition

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature (℃)</th>
<th>Doping ratio (x%)</th>
<th>Size±standard deviation (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsPb_{1-x}Sn_xBr_3</td>
<td>105</td>
<td>0</td>
<td>6.2±1.9</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>2.4</td>
<td>6.8±3.9</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>3.4</td>
<td>7.4±2.1</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0</td>
<td>8.3±4.8</td>
</tr>
<tr>
<td>CsPbBr_3</td>
<td>135</td>
<td>0</td>
<td>7.6±3.4</td>
</tr>
</tbody>
</table>