Supporting Information

A Ring-Perfluorinated Nonvolatile Additives with a High Dielectric Constant Lead to Highly Efficient and Stable Organic Solar Cells

Jiyeon Oh, Sungwoo Jung, Mingyu Jeong, Byongkyu Lee, Jungho Lee, Yongjoon Cho, Sang Myeon Lee, Shanshan Chen, Zhi-Guo Zhang, Yongfang Li, and Changduk Yang

a Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.

b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

* E-mail: yang@unist.ac.kr
Scheme S1. Synthetic routes of PS, PS-\textit{b}-PPFS and PPFS polymer additives.

Fig. S1 1H NMR data of PS-br
Fig. S2 1H NMR data of PS-b-PPFS

Fig. S3 1H NMR data of PPFS
Fig. S4 The J-V curves for PBDB-TT5:ITIC films with different concentration of each additive: (a) DIO, (b) PS, (c) PS-\textit{b}-PPFS, and (d) PPFS under AM 1.5G simulated solar radiation at 100mW cm$^{-2}$
Table S1. Photovoltaic parameters of NF-OSCs with different concentration of each additive.

<table>
<thead>
<tr>
<th>Additive (v/v)</th>
<th>V_{OC} a) [V]</th>
<th>J_{SC} a) [mA cm$^{-2}$]</th>
<th>FF a)</th>
<th>PCE a) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% DIO</td>
<td>0.904 (0.906±0.003)</td>
<td>13.15 (13.09±0.18)</td>
<td>63.55 (62.78±0.80)</td>
<td>7.58 (7.50±0.07)</td>
</tr>
<tr>
<td>2% DIO</td>
<td>0.889 (0.887±0.001)</td>
<td>9.16 (8.98±0.31)</td>
<td>59.69 (59.42±0.28)</td>
<td>4.86 (4.61±0.25)</td>
</tr>
<tr>
<td>3% DIO</td>
<td>0.849 (0.850±0.002)</td>
<td>6.39 (6.16±0.14)</td>
<td>44.09 (44.45±0.38)</td>
<td>2.39 (2.35±0.04)</td>
</tr>
<tr>
<td>1% PS</td>
<td>0.881 (0.882±0.011)</td>
<td>15.02 (14.99±0.15)</td>
<td>63.84 (63.46±0.57)</td>
<td>8.45 (8.39±0.06)</td>
</tr>
<tr>
<td>3% PS</td>
<td>0.894 (0.886±0.008)</td>
<td>14.87 (14.81±0.11)</td>
<td>64.01 (64.46±0.40)</td>
<td>8.51 (8.48±0.02)</td>
</tr>
<tr>
<td>4% PS</td>
<td>0.872 (0.876±0.003)</td>
<td>14.60 (14.83±0.14)</td>
<td>61.51 (60.94±0.56)</td>
<td>8.19 (8.07±0.12)</td>
</tr>
<tr>
<td>5% PS</td>
<td>0.886 (0.885±0.004)</td>
<td>13.37 (13.18±0.21)</td>
<td>50.01 (49.63±0.38)</td>
<td>5.92 (5.87±0.06)</td>
</tr>
<tr>
<td>1% PS-b-PPFS</td>
<td>0.887 (0.884±0.004)</td>
<td>14.46 (14.21±0.19)</td>
<td>67.92 (67.71±0.26)</td>
<td>8.51 (8.45±0.10)</td>
</tr>
<tr>
<td>3% PS-b-PPFS</td>
<td>0.882 (0.877±0.004)</td>
<td>15.00 (14.85±0.15)</td>
<td>64.90 (64.43±0.45)</td>
<td>8.42 (8.39±0.05)</td>
</tr>
<tr>
<td>4% PS-b-PPFS</td>
<td>0.901 (0.879±0.03)</td>
<td>13.62 (13.40±0.22)</td>
<td>69.01 (68.85±0.12)</td>
<td>8.10 (8.09±0.01)</td>
</tr>
<tr>
<td>5% PS-b-PPFS</td>
<td>0.884 (0.881±0.002)</td>
<td>14.77 (14.62±0.11)</td>
<td>63.90 (63.70±0.24)</td>
<td>8.22 (8.07±0.15)</td>
</tr>
<tr>
<td>1% PPFS</td>
<td>0.882 (0.876±0.004)</td>
<td>15.37 (14.88±0.48)</td>
<td>67.20 (66.85±0.37)</td>
<td>8.53 (8.43±0.10)</td>
</tr>
<tr>
<td>3% PPFS</td>
<td>0.894 (0.889±0.005)</td>
<td>15.19 (15.02±0.16)</td>
<td>65.75 (64.88±1.0)</td>
<td>8.87 (8.66±0.22)</td>
</tr>
<tr>
<td>4% PPFS</td>
<td>0.897 (0.886±0.007)</td>
<td>15.10 (14.74±0.34)</td>
<td>68.69 (67.42±0.9)</td>
<td>8.70 (8.53±0.17)</td>
</tr>
<tr>
<td>5% PPFS</td>
<td>0.889 (0.886±0.002)</td>
<td>15.92 (15.73±0.22)</td>
<td>66.02 (66.01±0.12)</td>
<td>8.51 (8.38±0.14)</td>
</tr>
</tbody>
</table>

a) The values in the parentheses are the average values obtained from over 16 devices.
Fig. S5 *Dark J^{1/2}-V plots* for the (a) electron-only, (b) hole-only devices based on the PBDB-TT5:ITIC blend films.

Table S2. The $P(E, T)$ values at short-circuit condition and maximum power output condition.

<table>
<thead>
<tr>
<th>Devices</th>
<th>$P(E, T)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At short-circuit</td>
</tr>
<tr>
<td>w/o additive</td>
<td>92.3</td>
</tr>
<tr>
<td>0.5% DIO</td>
<td>93.5</td>
</tr>
<tr>
<td>2% PS</td>
<td>95.2</td>
</tr>
<tr>
<td>2% PS-b-PPFS</td>
<td>94.6</td>
</tr>
<tr>
<td>2% PPFS</td>
<td>95.8</td>
</tr>
</tbody>
</table>
Table S3. The GIWAX parameters of out-of-plane and in-plane.

<table>
<thead>
<tr>
<th>Additive</th>
<th>Out-of-Plane</th>
<th>In-Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>π-π stacking cell axis (010)</td>
<td>Unit cell long axis (100)</td>
</tr>
<tr>
<td></td>
<td>q (Å$^{-1}$)</td>
<td>d-spacing (Å)</td>
</tr>
<tr>
<td>w/o additive</td>
<td>1.685</td>
<td>3.723</td>
</tr>
<tr>
<td>0.5% DIO</td>
<td>1.692</td>
<td>3.713</td>
</tr>
<tr>
<td>2% PS</td>
<td>1.695</td>
<td>3.707</td>
</tr>
<tr>
<td>2% PS-b-PPFS</td>
<td>1.692</td>
<td>3.714</td>
</tr>
<tr>
<td>2% PPFS</td>
<td>1.696</td>
<td>3.704</td>
</tr>
</tbody>
</table>

Fig. S6 The AFM height images in 4μm x 4μm (top) and TEM images of the blend film (bottom): (i) w/o additive, (ii) DIO, (iii) PS, (iv) PS-b-PPFS, and (v) PPFS.
Fig. S7 Device stability of the different processing additive contained films under different conditions: (a), (b) annealing-temperature stability in the N$_2$-filled glovebox; (c),(d) thermal-time stability at 150 °C; (e), (f) in the N$_2$-filled glovebox without capsulation of the long-term stability.
Fig. S8 Frequency dependence of the (a) capacitance and (b) dielectric constant in the blend system.

Fig. S9 Chemical structures of donors and acceptors used in other host systems.
Fig. S10 The $J-V$ curves with optimal concentration additive (a) J71:ITIC, (b) PTB7-Th:PC$_{71}$BM, and (c) PTB7-Th:PNDI-T10.
Table S4. Photovoltaic parameters having different types of active layers with and without additives.

<table>
<thead>
<tr>
<th>Devices</th>
<th>Additive</th>
<th>V_{oc}(^{a)}) [V]</th>
<th>J_{sc}(^{a)}) [mA/cm(^2)]</th>
<th>FF (^{a)})</th>
<th>PCE (^{a)}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J71:ITIC</td>
<td>X</td>
<td>0.919 (0.913±0.003)</td>
<td>17.15 (17.01±0.14)</td>
<td>61.30 (61.08±0.20)</td>
<td>9.68 (9.52±0.12)</td>
</tr>
<tr>
<td></td>
<td>0.5% DIO</td>
<td>0.922 (0.919±0.007)</td>
<td>15.38 (15.38±0.13)</td>
<td>56.01</td>
<td>7.96 (7.79±0.19)</td>
</tr>
<tr>
<td></td>
<td>1% PPFS</td>
<td>0.924 (0.927±0.006)</td>
<td>17.38 (17.08±0.40)</td>
<td>66.20</td>
<td>10.70 (10.45±0.23)</td>
</tr>
<tr>
<td>PTB7-Th:PC(_{71})BM</td>
<td>X</td>
<td>0.785 (0.792±0.006)</td>
<td>15.60 (15.28±0.38)</td>
<td>67.64</td>
<td>8.29 (8.05±0.24)</td>
</tr>
<tr>
<td></td>
<td>3% DIO</td>
<td>0.792 (0.793±0.003)</td>
<td>17.69 (17.45±0.25)</td>
<td>69.21</td>
<td>9.40 (9.21±0.20)</td>
</tr>
<tr>
<td></td>
<td>2% PPFS</td>
<td>0.805 (0.804±0.008)</td>
<td>15.49 (15.76±0.26)</td>
<td>69.67</td>
<td>8.70 (8.58±0.06)</td>
</tr>
<tr>
<td>PTB7-Th:PNDI-T10</td>
<td>X</td>
<td>0.793 (0.803±0.004)</td>
<td>12.74 (12.49±0.24)</td>
<td>56.21</td>
<td>5.68 (5.60±0.14)</td>
</tr>
<tr>
<td></td>
<td>1% DIO</td>
<td>0.782 (0.786±0.012)</td>
<td>12.44 (12.09±0.58)</td>
<td>46.51</td>
<td>4.52 (4.15±0.60)</td>
</tr>
<tr>
<td></td>
<td>2% PPFS</td>
<td>0.795 (0.799±0.003)</td>
<td>13.69 (13.52±0.17)</td>
<td>56.10</td>
<td>6.10 (6.01±0.12)</td>
</tr>
</tbody>
</table>

\(^{a)}\) The values in the parentheses are the average values obtained from over 16 devices.