Self-Assembly of Au Nano-Islands with Tuneable Organized Disorder for Highly Sensitive SERS

Zelio Fusco#, Renheng Bo#, Yuling Wangb, Nunzio Mottac, Hongjun Chen*a and Antonio Tricolia

aNanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, ACT 2601, Australia

bDepartment of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia

cInstitute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia

#The authors have equally contributed to the manuscript

*The authors equally share the corresponding author
S1. Large Scale Uniformity of SERS Substrates with Uniform Disorder

Fig S1. (a-f) Low magnification SEM images for the Au NIs substrates with different Au aerosol exposure time from 1 s to 30 s. The micrographs show the high uniformity and reproducible disordered morphology over large scales. A transition from an incoming aerosol- to a surface coagulation-induced growth is observed at 5 s.
S2. Morphological and Correlated Disorder Characterization

Fig. S2. (a,b) Scanning electron microscopy images of the Au NIs substrates with 5 s and 10 s aerosol deposition time and (c,d) two-dimensional FFT images of the respective samples.
S3. Optical Properties After Exposure of Different Concentration of R6G

Fig. S3. Normalized reflection spectra before and after the drop-casting of different concentration of R6G onto the Au NIs substrate with 20 s of deposition time.
S4. SERS EF with washing substrate

Fig. S4. SERS and Raman spectra of R6G 10^{-4} M on the 20 s Au NIs substrate and a bare Si substrate, respectively. Note that the red line has been multiplied three times. In this case, after dropcasting, the analyte was let dry naturally and thereafter the substrates were gently rinsed with ethanol to remove any excess of dye and induce the presence of a monolayer.