Electronic supplementary information

Polyacrylic acid coated carbon nanotube-paper composites for humidity and moisture sensing
Jinyuan Zhanga, Anthony Dichiarab, Igor Novoselova, Dayong Gaoa, Jae-Hyun Chung*a
a. Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195 (USA)
*Email: jae71@uw.edu
b. School of Environmental and Forest Sciences, University of Washington, Box 352600, Seattle, WA 98195 (USA)

Fig. S1 Microscope images of hygroexpansion of PAA-coated CPC specimen before and after immersion in water. The average dimensions changed from 11.9\ times 11.4 mm2 to 14.1\times 12.0 mm2. The resistance changed from 986 \textOmega to 1766 \textOmega.
Humidity test results for PAA treated CPC for RH 10~30%. The sensor is placed on a hot plate at 40°C to control low RH.
Fig. S3 Humidity test for 10 cycles of RH between 30 and 95%. Comparison of the RH data measured from the commercial humidity sensor and the RH measured from a PAA-treated CPC humidity sensor. The resistance change of the CPC sensor is converted into the humidity using the empirical equation.
Fig. S4 Normalized resistance change with applied heat (N=3).
Fig. S5 (a) Humidity test and curve fitting result of a CPC humidity sensor where only a CPC part is exposed to humidity. (b) Humidity test for a CPC humidity sensor where only the interface between the silver electrodes and CNTs is exposed to humidity.
Fig. S6 Response time of a CPC sensor to humidity changes. The response time of a CPC sensor is compared to a commercial sensor during humidity variation; the sensor response is 8.0±1.6 seconds based on responses of 6 RH cycles after stabilization.
Fig. S7 Comparison of a commercial humidity sensor with a PAA-coated CPC sensor. (a) Humidity measurement of a CPC region in comparison to a reference sensor (a) Humidity measurement of a CPC/silver interface region in comparison to a reference sensor.
Fig. S8 Temperature calibration curve of a CPC sensor.
Fig. S9 Detection of small water quantities (0.5 ~ 20 µL) with a PAA-treated CPC sensor.
Fig. S10 Normalized resistance of PAA-treated CPCs immersed in aqueous solutions at pH 4, 7, and 10.
Table S1 Comparison of sensitivities of carbon nanotube-paper composites for relative humidity (RH).

<table>
<thead>
<tr>
<th>Sensing materials</th>
<th>Sensing mechanism</th>
<th>Sensitivity</th>
<th>Dynamic range for RH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWCNT-printer paper¹</td>
<td>resistive</td>
<td>0.35, where sensitivity=$\frac{\Delta I}{I_0}$/Δ (%RH), where (\Delta I) is the current difference at different acquisition time. (I_0) is the initial current</td>
<td>11-95</td>
</tr>
<tr>
<td>SWCNT-cellulose paper²</td>
<td>resistive</td>
<td>-0.90, where sensitivity=$\frac{\Delta c}{c_0}$/Δ (%RH). (\Delta c) is the conductance difference at different acquisition time and (c_0) is the initial conductance</td>
<td>10-75</td>
</tr>
<tr>
<td>MWCNT sheet³</td>
<td>resistive</td>
<td>0.75, where sensitivity=$\frac{\Delta R}{R_0}$/Δ (%RH). (\Delta R) is the resistance difference at different acquisition time. (R_0) is the initial resistance</td>
<td>10-90</td>
</tr>
<tr>
<td>KC-MWCNT⁴</td>
<td>resistive</td>
<td>1.0, where sensitivity=$\frac{\Delta R}{R_0}$/Δ (%RH). (\Delta R) is the resistance difference at different acquisition time</td>
<td>20-90</td>
</tr>
<tr>
<td>MWCNT-stainless steel⁵</td>
<td>capacitive</td>
<td>36, where sensitivity=$\frac{\Delta C}{C_0}$/Δ (%RH). (\Delta C) is the capacitance difference at different acquisition time. (C_0) is the initial capacitance</td>
<td>50-85</td>
</tr>
<tr>
<td>chemically treated MWCNT⁶</td>
<td>resistive</td>
<td>1.3, where sensitivity=$\frac{\Delta R}{R_0}$/Δ (%RH). (\Delta R) is the resistance difference at different acquisition time. (R_0) is the initial resistance</td>
<td>11-98</td>
</tr>
<tr>
<td>Polyimide-MWCNT⁷</td>
<td>resistive</td>
<td>0.47, where sensitivity=$\frac{\Delta R}{R_0}$/Δ (%RH). (\Delta R) is the resistance difference at different acquisition time. (R_0) is the initial resistance</td>
<td>10-95</td>
</tr>
<tr>
<td>Polyimide-MWCNT⁸</td>
<td>capacitive</td>
<td>0.22, where sensitivity=$\frac{\Delta C}{C_0}$/Δ (%RH). (\Delta C) is the capacitance difference at different acquisition time. (C_0) is the initial capacitance.</td>
<td>30-90</td>
</tr>
<tr>
<td>PAA treated CPC sensor (This paper)</td>
<td>resistive</td>
<td>90, where sensitivity=$\frac{\Delta R}{R_0}$/Δ (%RH). (\Delta R) is the resistance difference at different acquisition time. (R_0) is the initial resistance</td>
<td>30-95</td>
</tr>
</tbody>
</table>
References
5 J. Yeow and J. She, Nanotechnology, 2006, 17, 5441.