Supporting Information

Which Isomer is Better for Charge Transport: *Anti*- or *Syn*-?

*Peng Hu,*ab *Jun Ye*ac and *Hui Jiang*ab

a School of Physics, Northwest University, Xi’an 710069, China

b School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore. E-mail: jianghui@ntu.edu.sg

c Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore. E-mail: vej@ihpc.a-star.edu.sg
Scheme S1 The synthetic routes for syn-1 and anti-1.
Scheme S2 The synthetic routes for *syn-2* and *anti-2*.
Scheme S3 The synthetic routes for anti-3.
Scheme S4 The synthetic routes for syn-ADT derivatives (syn-4a and syn-4b).

syn-4a: R=Et
syn-4b: R=i-Pr
Scheme S5 The synthetic routes for syn-5a, syn-5b, and syn-5c.

syn-5a: R=i-Pr₃
syn-5b: R=i-Bu₃
syn-5c: R=n-Bu₃
Scheme S6 The synthetic routes for anti-6a and anti-6b).
Scheme S7 The synthetic routes for syn-7.
Scheme S8 The synthetic routes for anti-7.
Scheme S9 The synthetic routes for syn-9 and anti-9.