Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics

Zhenyu Wang,^{†,‡,¶} Alex M. Ganose,^{‡,¶,§} Chunming Niu,[†] and David O. Scanlon^{*,‡,¶,§}

[†]Xi'an Jiaotong University, Center of Nanomaterials for Renewable Energy, State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, 99 Yanxiang Road, Xi'an 710054, China

[‡]University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK

¶Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, UK

§Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK

E-mail: d.scanlon@ucl.ac.uk

Supporting Information

Table S1: Lattice parameters of the $2 \times 1 \times 1$ supercells of (AEQT)PbX₄ (X = Cl, Br, I), calculated using the PBE functional with Grimme's D3 dispersion correction, in comparison with the unit cell in the computational study. *a* is along the direction perpendicular to the perovskite sheet. Lattice lengths given in Å and lattice angles given in °

Compounds	Functional	a	b	c	α	eta	γ
$(AEQT)PbCl_4$	PBE-D3	11.192	11.346	39.976	92.5	90.0	90.0
	Ref. 1	11.295	10.949	40.851	91.8	90.0	90.0
$(AEQT)PbBr_4$	PBE-D3	11.525	11.824	39.037	91.9	90.0	90.0
	Ref. 1	11.603	11.480	39.950	91.2	90.0	90.0
$(AEQT)PbI_4$	PBE-D3	12.107	12.589	38.072	92.2	90.0	90.0
	Ref. 1	12.097	12.225	39.015	91.1	90.0	90.0

Table S2: Average in-plane and out-of-plane Born effective charges (Z^*) over Pb/Sn and Cl/Br/I atoms. Superscripts || and \perp indicate properties parallel (in-plane) and perpendicular (out-of-plane) to the 2D perovskite sheets, respectively

Compounds	Atom	Z^*_{\parallel}	Z_{\perp}^{*}
	Pb	3.651	3.718
(AEQ1)I DO14	Cl	-1.583	-1.627
(AFOT)DbD _n	Pb	3.968	3.434
$(AEQ1)FDDI_4$	Br	-1.544	-1.701
	Pb	4.229	3.024
$(AEQ1)FDI_4$	Ι	-1.726	-1.254
(AFOT)SpCl	Sn	3.861	3.937
$(AEQ1)SIICI_4$	Cl	-1.630	-1.697
(AFOT)SpPn	Sn	4.532	3.623
$(AEQ1)SIIDI_4$	Br	-1.620	-1.888
(AEOT)S _m I	Sn	5.315	3.287
$(AEQI)SIII_4$	Ι	-2.015	-1.293

Figure S1: The basic structure of 2D hybrid perovskites: (a) "staggered" $((R-NH_3)_2BX_4)$ and (b) "eclipsed" arrangement $((H_3N-R-NH_3)BX_4)$.

Figure S2: HSE43+SOC calculated band structures and density of states (DOS) for the layered tin hybrid perovskites: (a) (AEQT)PbCl₄, (b) (AEQT)PbBr₄, (c) (AEQT)PbI₄, (d) (AEQT)SnCl₄, (e) (AEQT)SnBr₄ and (f) (AEQT)SnI₄. The valence band maximum is set to 0 eV. Valence and conduction bands except the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of AEQT²⁺ are indicated by blue and orange lines, respectively, while the HOMO and LUMO of AEQT²⁺ are marked in green and brown, respectively. A Green and red circles indicate the position of the valence band maximum and conduction band minimum.

Figure S3: Charge density isosurfaces of the VBM (left) and CBM (right), pictured along the (001) direction, for the layered tin hybrid perovskites: (AEQT)PbCl₄, (AEQT)PbBr₄, (AEQT)PbI₄, (AEQT)SnCl₄, (AEQT)SnBr₄ and (AEQT)SnI₄, where the Pb, Sn and I atoms are shown in black, light grey and purple, respectively. The organic MA cations have been removed for clarity.

References

 Liu, C.; Huhn, W.; Du, K.-Z.; Vazquez-Mayagoitia, A.; Dirkes, D.; You, W.; Kanai, Y.; Mitzi, D. B.; Blum, V. Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid Organic-Inorganic Perovskites. *Phys. Rev. Lett.* 2018, 121, 146401.