Supplementary Materials for

Facile p-n Control, Magnetic and Thermoelectric Properties of Chromium Selenides Cr$_{2+x}$Se$_3$

Quansheng Guo, † David Berthebaud, ‡ Jumpei Ueda, § Setsuhisa Tanabe, § Akinobu Miyoshi, † Kazuhiko Maeda, † and Takao Mori †‡*

† Center for Functional Sensor & Actuator (CFSN) & WPI Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan

‡ CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, Tsukuba 305-0044, Japan

§ Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

† Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

‡ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8671, Japan

Corresponding author: MORI.Takao@nims.go.jp
Figure S1. Temperature dependence of (a) Electrical conductivity, (b) Seebeck coefficient, (c) Power factor and (d) Thermal conductivity of \(\text{Cr}_{2+x}\text{Se}_3 \) \((x = -0.04, -0.02, 0, 0.04, 0.06, 0.08 \text{ and } 0.12) \). No significant hysteresis was observed.
Figure S2. Tauc plot for Cr$_2$Se$_3$.

$E_g = 0.40$ eV
Table S1. Lattice parameters of Cr$_{2+y}$Se$_3$ ($x = -0.04, 0, 0.08$) at room temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$x = -0.04$</th>
<th>$x = 0$</th>
<th>$x = 0.08$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a [Å] = b</td>
<td>6.2478(3)</td>
<td>6.2510(2)</td>
<td>6.2490(1)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>17.3354(9)</td>
<td>17.3280(5)</td>
<td>17.3853(4)</td>
</tr>
<tr>
<td>V [Å3]</td>
<td>586.02(8)</td>
<td>586.38(5)</td>
<td>587.94(2)</td>
</tr>
<tr>
<td>$R_P^a \backslash R_B^b$</td>
<td>0.107 \ 0.066</td>
<td>0.109 \ 0.106</td>
<td>0.122 \ 0.096</td>
</tr>
</tbody>
</table>

$^a R_P = \Sigma |y_o - y_c| / \Sigma |y_o|$

$^b R_B = \Sigma |I_o - I_c| / \Sigma |I_o|$