Supplementary Information

Yongqiang Ji, Minqiang Wang*, Zhi Yang, Shangdong Ji, Hengwei Qiu

Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry, International Center for Dielectric Research (ICDR), Shanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China. E-mail: mqwang@xjtu.edu.cn
Experimental details

Materials.

The cesium carbonate (Cs$_2$CO$_3$, 99.99%), oleic acid (OA, 85%), oleyamine (OLA, 80-90%), 1-octadecene (ODE, >90%), LiF (99.99%) were purchased from Aladdin. The lead(II) bromide (PbBr$_2$, 99.99%), Poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT: PSS,4083), N, N'-Bis(3- methylphenyl)-N, N'-bis(phenyl) benzidine (poly-TPD), and 1,3,5-Tris(1-phenyl-1Hbenzimidazol-2-yl) benzene (TPBi) was purchased from Xi'an Polymer Light Technology Corp, and the n-hexane and ethyl acetate purchased from Shanghai Chemical Industrial Company. All the reagents were used without further purification.

Synthesis of CsPbBr$_3$ NCs of Diverse Shapes

All syntheses were performed in air and without any pre-dried chemicals or solvents. During the synthesis of Cs-OA, 0.4 g Cs$_2$CO$_3$ dissolved in 1.5 mL OA and 15 ml ODE in a 20 ml vial on a hotplate set to 100 °C. After the Cs$_2$CO$_3$ was completely dissolved, the vial was moved to a room temperature, and the solution was allowed to cool. The PbBr$_2$ (1 mmol) was dissolved in 10 mL ODE, OA (0.5 ml for CsPbBr$_3$ NWs, 1ml for CsPbBr$_3$ 1DSCs, 1 ml for CsPbBr$_3$ NSs) and OLA (1 ml for CsPbBr$_3$ NWs, 1 ml for CsPbBr$_3$ 1DSCs, 0.5 ml for CsPbBr$_3$ NSs) in a 30 mL vial on a hotplate set at 120 °C. After the Cs$_2$CO$_3$ was completely dissolved. 1 mL of Cs-OA was swiftly injected. After about 30 seconds the reaction turned turbid white, depending on the required thickness, was quickly cooled down after 0-300 s to RT with a cold water bath. In addition, PbI$_2$ (0.5 mmol) replaced PbBr$_2$ (0.5 mmol) to synthesize CsPbBr$_{1.5}$I$_{1.5}$ at 170. PbCl$_2$ (0.5 mmol) replaced PbBr$_2$ (0.5 mmol) to synthesize CsPbBr$_{1.5}$Cl$_{1.5}$ at 200°C. 1 ml TOP was added to dissolve PbCl$_2$.

Isolation and Purification
First, equal volume ethyl acetate was added to the crude solution of 1DSCs. The solutions were first centrifuged at 5000 rpm for 5 min to remove excess by-products. Then, the supernatant was discarded and the aggregated QDs were redispersed in toluene.

Device Fabrication

Patterned ITO coated glass was successively cleaned with soap, deionized water, ethanol, chloroform, acetone, and isopropanol and treated with UV and ozone for 10 min. A 40 nm PEDOT:PSS film was spin-coated onto ITO glass at 3000 rpm for 45 s and annealed in air at 120°C for 30 min. Then the substrate was transferred into a glovebox, and 40 nm poly-TPD (dissolved in chlorobenzene at a concentration of 10 mg/mL) was spin-coated onto the PEDOT:PSS film at a speed of 4000 rpm for 40 s and annealed at 110 °C for 30 min. The perovskite NCs (~15 mg mL⁻¹) active layer was spin-cast from their colloidal solution at 2000 rpm for 45 s. TPBI (40 nm), LiF (1 nm), and Al (150 nm) layers were sequentially deposited by thermal evaporation in a vacuum deposition clamber (1×10⁻⁵Torr). The Al cathode was deposited through a shadow mask defining device area of 2 mm×2 mm.

Measurement and characterization

The transmission electron microscopy (TEM) studies were carried out using JEOL JEM-2100 at 200 kV. The energy dispersive spectrometer (EDS) patterns were investigated by field emission scanning electron microscope (FESEM, FEI Quatan FEG 250) equipped with an energy dispersive spectrometer. X-ray photoelectron spectroscopy (XPS) spectra were measured by an X-ray photoelectron spectrometer (Thermo Fisher ESCALAB Xi+). The
photoluminescence (PL) spectra and fluorescence lifetimes were recorded on an Edinburgh Instruments FLS9 spectrometer. The ultraviolet-visible (UV-Vis) absorption spectra were recorded by PE Lambda 950. The x-ray diffraction (XRD) patterns were obtained using the DB-ADVANCE X-ray diffraction analyzer diffractometer. The particle size distribution studies were carried out using Zetasizer Nano ZSE.
Introduce and discuss some equations

There are three main equations corresponding to these reaction, Firstly, is a tri-exponential fitting function:

\[I = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right) \quad \text{Equation 1} \]

Where \(A_1, A_2 \) and \(A_3 \) are constants, \(t \) is time, and \(\tau_1, \tau_2, \tau_3 \) represent the decay lifetimes.

The average lifetime (\(\tau_{\text{ave}} \)) can be calculated as follows:

\[\tau_{\text{ave}} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3} \quad \text{Equation 2} \]

Third, is a Gibbs-Thomson equation, which can written as

\[C_n = C_b e^{\exp\left(\frac{2\rho V_m}{rRT}\right)} \quad \text{Equation 3} \]

In which \(C_n \) and \(C_b \) are the solubility of the nanoparticle and the corresponding bulk solid; \(\sigma \) is the specific surface energy; \(V_m \) is the molar volume of the material; \(R \) is the gas constant and \(T \) is the absolute temperature.

Introduce one tables

Table 1 Tri-exponential fitting parameters of time-resolved PL decay curves for 1DSCs at different reaction time.

<table>
<thead>
<tr>
<th></th>
<th>(A_1(%))</th>
<th>(\tau_1(\text{ns}))</th>
<th>(A_2(%))</th>
<th>(\tau_2(\text{ns}))</th>
<th>(A_3(%))</th>
<th>(\tau_3(\text{ns}))</th>
<th>(\tau_{\text{ave}}(\text{ns}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 seconds</td>
<td>1.54</td>
<td>1.2685</td>
<td>38.37</td>
<td>7.0920</td>
<td>60.08</td>
<td>24.3774</td>
<td>17.3866 ns</td>
</tr>
<tr>
<td>60 seconds</td>
<td>3.09</td>
<td>1.3896</td>
<td>20.48</td>
<td>7.3471</td>
<td>76.43</td>
<td>38.5696</td>
<td>31.0263 ns</td>
</tr>
<tr>
<td>300 seconds</td>
<td>3.19</td>
<td>1.5231</td>
<td>18.90</td>
<td>7.5081</td>
<td>77.91</td>
<td>40.0838</td>
<td>32.6969 ns</td>
</tr>
</tbody>
</table>
Fig. S1 TEM images of the self-assembled 1DSCs of (a) CsPbCl$_{1.5}$Br$_{1.5}$ and (b) CsPbBr$_{1.5}$I$_{1.5}$.
Figure S2 (a) UV-visible absorption (red line) and photoluminescence (green line) spectra of CsPbBr$_3$ NCs. The photoluminescence spectrum was collected at 365 nm excitation wavelength. (b) Crystal structure of cubic CsPbBr$_3$. (c) High-resolution TEM image of CsPbBr$_3$ NWs. (d) Time-resolved PL decay curves of CsPbBr$_3$ NCs.
Figure S3 TEM images of CsPbBr$_3$ NCs: (a) NWs. (b) NSs. (c) Structure collapse of NWs and NSs.
Figure S4 TEM images of randomly dispersed thick CsPbBr$_3$NSs: (a) Low resolution. (d) High resolution. TEM images of 1DSCs with the same orientation as the NWs: (b, e) c-1DSCs. (c) s-1DSCs. (f) bent 1DSCs.
Figure S5 TEM images of CsPbBr$_3$ 1DSCs: (a) initial 1DSCs. (b) Ethanol-treated 1DSCs within 5 min. (c) Ethanol-treated 1DSCs within 1 hours. UV-visible absorption (red line) and photoluminescence (green line) spectra of CsPbBr$_3$ NCs: (d) initial 1DSCs. (e) Ethanol-treated 1DSCs within 5 min. (f) Ethanol-treated 1DSCs within 1 hours.
Figure S6 TEM images of CsPbBr$_3$ NCs: (a) Randomly dispersed NSs. (b) s-1DSCs. (c) Mutual vertical s-1DSCs. (d) c-1DSCs.
Figure S7 (a) TEM images of the c-CsPbBr$_3$ 1DSCs: (a) Low resolution. (b) High resolution.
Figure S8. High-resolution XPS spectra of CsPbBr$_3$ NCs: (a) Cs 3d. (b) Pb 4f. (c) Br 3d. (d) EDS spectra of CsPbBr$_3$ NCs.
Figure S9 (a) Photoluminescence spectrum of CsPbI₃ NCs. (b) TEM image of CsPbBr₃ NSs.
Figure S10 (a) LED device structure. (b) Flat band energy level diagram. (c) Current density (left) and luminance as a function of voltage (right). (d) Current efficiency (left) and external quantum efficiency (right) as a function of luminance.