Supporting information for

Aggregation Behavior in Naphthalene-Appended Diketopyrrolopyrrole Derivatives and its Gas Adsorption Impact on Surface Potential

Gitish K. Dutta,ab* S. Kasthuri,gc Gobinath Marappand Surya Velappa Jayaraman,dyuvaraj Sivalingam,d* Corrado Di Natale e and Venkatramaiah Natalapati ac*

a Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bangalore-560012, India.
b Department of Chemistry, National Institute of Technology Meghalaya, Bijni Complex, Laitumkhrah, Shillong-793003, Meghalaya, India.
c Department of Chemistry, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamilnadu-603203, India.
d Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamilnadu-603203, India.
e Department of Electronics Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy.
Contents

1. Experimental Section ...3
 1.1 Synthesis ...3

2. Sample preparation for SKP measurements ...5

3. Structural Characterization ...5

4. Photophysical studies ...7

5. Electrochemical studies ...10

6. DFT and TD-DFT studies ..11

7. Powder X-ray diffraction studies ..13

8. Morphology ..14

9. DSC and TGA analysis ...14
1. Experimental Section

1.1 Synthesis

6-Bromo-2-octyloxynaphthalene (2): In a two-neck round bottom flask (100 mL), 6-bromo-2-naphthol (2 g, 8.96 mmol), 1-bromooctane (1.8 g, 9.32 mmol), KOH (0.55 g, 9.85 mmol) and NaI (0.09 g, 0.6 mmol) were dissolved in ethanol (50 mL) and the reaction mixture was refluxed for 24 h. The solution was concentrated in rotavapor; water was added and extracted by ethyl acetate followed by drying over anhydrous MgSO$_4$. The solvent was removed and the desired product was purified by column chromatography using hexane as an eluent (2.64 g, 88 % yield).

1H NMR (400 MHz, CDCl$_3$): δ 7.90 (s, 1H), 7.63 (d, $J = 9.0$ Hz, 1H), 7.58 (d, $J = 8.8$ Hz, 1H), 7.48 (dd, $J = 8.7$, 1.8 Hz, 1H), 7.16 (dd, $J = 9.0$, 2.4 Hz, 1H), 7.08 (d, $J = 2.1$ Hz, 1H), 4.07 (t, $J = 6.4$ Hz, 2H), 1.87-1.80 (m, 2H), 1.56-1.45 (m, 2H), 1.40-1.30 (m, 8H), 0.88 (t, $J = 4.2$ Hz, 3H).

13C NMR (400 MHz, CDCl$_3$): δ 157.44, 133.12, 129.93, 129.52, 128.39, 128.32, 120.07, 116.86, 106.55, 68.13, 31.81, 29.36, 29.22, 26.09, 22.65, 14.07. Anal. Calcd for C$_{18}$H$_{23}$BrO: C, 64.48; H, 6.91; Br, 23.83; O, 4.77. Found: C 64.94, H 7.10.

2-Octyloxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolato)naphthalene (3): A two necked round bottom flask was charged with 6-bromo-2-octyloxynaphthalene (2.0 g, 5.96 mmol), bis(pinacolato)diboron (1.66 g, 6.56 mmol), potassium acetate (1.75 g, 17.83 mmol), dichlorobis(triphenylphosphine)palladium(II) (0.258 g, 0.368 mmol) and dry 1,4-dioxane (30 mL) was then added and the mixture was bubbled with argon for 15 min. The reaction mixture was heated at 80 ºC for 24 h, cooled to room temperature. Water (200 mL) was added and then extracted with ethyl acetate (50 mL × 3) and the combined organic layer was washed with 2N HCl (100 mL) and dried over anhydrous magnesium sulfate. The solvent was removed by rotary evaporation and the residue was passed through a flash silica gel column with 5-10% ethyl acetate/hexane (1.90 g, yield 85%).

1H NMR (400 MHz, CDCl$_3$): δ 8. 28 (s, 1H), 7.82-7.75 (m, 2H), 7.70 (d, $J = 8$ Hz, 1H), 7.14-7.11 (m, 2H), 4.07 (t, $J = 6.4$ Hz, 2H), 1.88-1.81 (m, 2H), 1.53-1.46 (m, 2H), 1.38 (s, 12H), 1.36-1.29 (m, 8H), 0.89 (t, $J = 6.8$ Hz, 3H).

13C NMR (400 MHz, CDCl$_3$): δ 158.10, 136.47, 135.97, 131.02, 130.16, 128.3 125.84, 118.98, 106.42, 83.77, 68.04, 31.82, 29.38, 29.24, 26.12, 24.92, 22.66, 14.08. Anal. Calcd for C$_{24}$H$_{35}$BO$_3$: C, 75.39; H, 9.23; B, 2.83; O, 12.55. Found: C, 75.39; H, 9.00.
2,5-dihexyl-3,6-bis(4-(6-(octyloxy)naphthalen-2-yl)phenyl)pyrrolo[3,4-c]pyrrole\textsubscript{1,4} (2H,5H)-dione (Naph-PDPP): 2-Octyloxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolato) naphthalene (0.56 g, 1.46 mmol), 3,6-bis(4-bromophenyl)-2,5-dihexylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (PDPP) (0.40 g, 0.651 mmol), Aliquat 336 (2 drops) 2 M aqueous K\textsubscript{2}CO\textsubscript{3} (0.540 g, 3.91 mmol) toluene (30 mL) and water (1 mL) were placed together in a round bottom flask and purged with argon for 20 min. To this solution, Pd\textsubscript{2}(dba)\textsubscript{3} (0.017 g, 0.018 mmol), (o-tolyl)\textsubscript{3}P (0.02 g, 0.065 mmol) was added and the reaction mixture was heated at 110 °C for 72 h. Then the reaction mixture was poured into water (100 mL) and extracted with chloroform. The organic layer was washed with 2 N HCl (200 mL) then concentrated in rotavapor. The resulting product was purified by silica gel column chromatography using hexane: chloroform (1:1) as eluent (0.470 g, yield 75%). 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.05 (s, 2H), 7.97 (d, J= 8.4 Hz, 4H), 7.88 (d, J= 8.4 Hz, 4H), 7.82 (d, J= 7.6 Hz, 4H), 7.75 (d, J= 8.8 Hz, 2H), 7.20 (d, J= 8.8 2H), 7.17 (s, 2H), 4.10 (t, J = 6.8 Hz, 4H), 3.84 (t, J = 7.2 Hz, 4H), 1.90-1.83 (m, 4H), 1.70-1.67 (m, 4H), 1.54-1.48 (m, 4H), 1.41-1.25 (m, 28H), 0.90 (t, J= 6.4 Hz, 6H), 0.84 (t, J= 6Hz, 6H). 13C NMR (400 MHz, CDCl\textsubscript{3}): δ 162.85, 157.64, 148.06, 143.82, 134.88, 129.80, 129.28, 128.98, 127.45, 126.75, 125.97, 125.47, 127.79, 119.69, 68.11, 42.12, 31.25, 29.49, 29.38, 29.25, 26.44, 26.11, 22.66, 22.48, 14.10, 13.96. MALDI-MS: Found: m/z = 966.20 [M+H]+, Calcd for C\textsubscript{66}H\textsubscript{80}N\textsubscript{2}O\textsubscript{4} [M]+= 965.35 Anal. Calcd for C\textsubscript{66}H\textsubscript{80}N\textsubscript{2}O\textsubscript{4}: C, 82.12; H, 8.35; N, 2.90; O, 6.63. Found: C, 81.82; H, 7.81; N, 3.1.

2,5-dihexyl-3,6-bis(5-(6(octyloxy)naphthalen-2-yl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole\textsubscript{1,4}(2H,5H)-dione (Naph-TDPP): Naph-TDPP was synthesized by similar procedure. Since the solubility of Naph-TDPP was less it was purified by washing with hot methanol and acetone (0.5 g, yield 80%). 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 9.00 (d, J= 4Hz, 2H), 8.06 (s, 2H), 7.80 (d, J= 8 Hz, 2H), 7.79-7.74 (m, 4H), 7.56 (d, J= 4Hz, 2H), 7.19 (d, J= 8, 2H), 7.12 (s, 2H), 4.16 (t, J = 5.6 Hz, 4H), 4.07 (t, J = 6.8 Hz, 4H), 1.87-1.78 (m, 8H), 1.51-1.48 (m, 8H), 1.37-1.25 (m, 24H), 0.93-0.88 (m, 12H). 13C NMR for Naph-TDPP was not able to record due to low solubility. MALDI-MS: Found: m/z = 976.77 [M]+, Calcd for C\textsubscript{66}H\textsubscript{76}N\textsubscript{2}O\textsubscript{4}S\textsubscript{2} [M]+: 976.52. Anal. Calcd for:
C₆₂H₇₆N₂O₄S₂: C, 76.19; H, 7.84; N, 2.87; O, 6.55; S, 6.56. Found: C, 75.67; H, 7.65; N, 3.0; S, 6.52.

2. Structural Characterization

Figure S1 ¹H NMR (400 MHz) of Naph-PDPP in CDCl₃.
Figure S2 1H NMR (400 MHz) of Naph-TDPP in CDCl$_3$.

Figure S3 The HR-MS of Naph-PDPP.
3. Photophysical studies

Figure S4 The HR-MS of Naph-TDPP.

Figure S5 The de-convolution of the emission spectra of Naph-PDPP.
Figure S6 Concentration-dependent absorption spectra of Naph-PDPP and Naph-TDPP.

Figure S7 Excitation spectra of Naph-PDPP (a) and Naph-TDPP (b) at different concentrations.
Figure S8 Fluorescence lifetime decay curve of Naph-PDPP and Naph-TDPP.

Figure S9 Fluorescence lifetime decay of Naph-TDPP at different concentrations and at different emission wavelengths.
4. Electrochemical study

Figure S10 Cyclic voltammogram of Naph-PDPP and Naph-TDPP.

Table S1 Summary of optical and electrochemical properties

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Film</th>
<th>Solution</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ_{abs} [nm]</td>
<td>λ_{em} [nm]</td>
<td>λ_{abs} [nm]</td>
</tr>
<tr>
<td>Naph-PDPP</td>
<td>552</td>
<td>598</td>
<td>498</td>
</tr>
<tr>
<td>Naph-TDPP</td>
<td>618</td>
<td>695</td>
<td>617</td>
</tr>
</tbody>
</table>
5. DFT and TD-DFT studies

Figure S11 Electron density surface of Naph-PDPP (a) and Naph-TDPP.

11
(a) Torsion angle (23.95°)

(b) Torsion angle (10.27°)

Figure S12 Optimized geometry of (a) Naph-PDPP (b) Naph-TDPP.

Figure S13 Comparison of UV-Visible spectra of Naph-PDPP and Naph-TDPP in solution (CHCl₃) with TD-DFT calculations.
Table S2. Summary of TD-DFT calculations

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Dominant Contribution (%)</th>
<th>Absorption (nm)</th>
<th>Energy (eV)</th>
<th>Oscillator strength (f)</th>
<th>Dipole Moment (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H -> L (61.2%)</td>
<td>517.00</td>
<td>2.3752</td>
<td>1.2630</td>
<td>0.3123</td>
</tr>
<tr>
<td>Naph-PDPP</td>
<td>H-2 -> L (67.68%)</td>
<td>418.53</td>
<td>2.9624</td>
<td>0.1364</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H-6 -> L (56.73%)</td>
<td>359.75</td>
<td>3.4464</td>
<td>0.0194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H-4 -> L (26.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H -> L (60.7%)</td>
<td>594.75</td>
<td>2.0952</td>
<td>1.4832</td>
<td>0.5385</td>
</tr>
<tr>
<td>Naph-TDPP</td>
<td>H-2 -> L (66.33%)</td>
<td>439.44</td>
<td>2.8214</td>
<td>0.1841</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H -> L+2 (16.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H -> L+2 (66.28%)</td>
<td>384.25</td>
<td>3.2267</td>
<td>0.0736</td>
<td></td>
</tr>
</tbody>
</table>

6. Thin film X-ray diffraction studies

![Thin film XRD of Naph-PDPP and Naph-TDPP.](image)

Figure S14 Thin film XRD of Naph-PDPP and Naph-TDPP.
7. Morphology

Figure S15 AFM images of Naph-PDPP.

8. DSC and TGA analysis

Figure S16 TGA of Naph-PDPP and Naph-TDPP.
9. Sample preparation for SKP measurements
First, the ITO substrate was cut into 1 cm × 2 cm and cleaned with soap solution followed by milli-pore water, acetone, and ethanol at 55°C in ultrasonicator for 30 minutes. The Naph-PDPP and Naph-TDPP were dissolved in chloroform and drop-cast on the cleaned ITO substrate. The sample is allowed to dry at ambient temperature. All the experiments were carried out in the presence of Millipore water.
Figure S18 Raster scan of Naph-TDPP films in dark and light illumination: (a) Naph-TDPP film in ambient air, (b) Naph-TDPP film in ethanol and (c) Naph-TDPP film in triethylamine.