Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Efficient Perovskite Nanocrystal Light-Emitting Diodes Using Benzimidazole-Substituted Anthracene Derivative as the Electron Transport Material

Sudhir Kumar,^a Marcato Tommaso,^a Serhii I. Vasylevskyi,^b Jakub Jagielski,^a

Katharina M. Fromm,^{b*} Chih-Jen Shih^{a*}

- ^a Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1–5/10, CH-8093 Zurich, Switzerland
- ^b Department of Chemistry, University of Fribourg, Ch. du Musée 9, 1700 Fribourg CH-1700 Fribourg, Switzerland

*Email: katharina.fromm@unifr.ch (KMF) and chih-jen.shih@chem.ethz.ch (CJS)

Figure S1. Photoluminescence and absorption spectra of colloidal FA_{0.5}MA_{0.5}PbBr₃ perovskite nanocrystals.

Figure S2. XRD pattern of colloidal FA_{0.5}MA_{0.5}PbBr₃ perovskite nanocrystals.

Figure S3. (a) *J-V* experimental data with axes transformed according to modified Poole-Freckle equation and fitting of the model used to extract electron mobility. Estimated zero field mobility $\mu_0 = 8:11 \times 10^{-6} \text{ cm}^2 \text{V}^{-1} \text{ s}^{-1}$.

Figure S4. Schematic device architecture of devices with **BBIA** and TPBi electron transporting materials.

Figure S5. EL spectra of devices at different operating voltages ranging between 2.5 to 6 V.

Figure S6. Lifetime of PeLED based on conventional electron transporting material, TPBi. Relative luminance and driving voltage change as a function of time under continuous electrical stress at a constant current density of 20 mA cm⁻².

Figure S7. ¹H-NMR spectrum of BBIA collected in d_2 -DCM (inset: zoomed aromatic region).

Figure S8. ¹³C-NMR spectrum of BBIA in d_2 -DCM. (inset: zoomed region of BBIA peaks)

Figure S9. PXRD of BBIA sample as synthesized fitting with calculated powder pattern from single crystal of BBIA CCDC 635086.¹ (Cu-irradiation $\lambda = 1.54060$ Å, collected in a STOE STADI P).

References

1. L. Li, T.-L. Hu, J.-R. Li, D.-Z. Wang, Y.-F. Zeng and X.-H. Bu, *CrystEngComm*, 2007, 9, 412-420.