Electronic Supplementary Information

Dibenzo[\(b,d\)]furan and Dibenzo[\(b,d\)]thiophene Molecular Dimers as Hole Blocking Materials for High-Efficiency and Long-Lived Blue Phosphorescent Organic Light-Emitting Diodes

Seokhoon Jang,\(^a\) Kyung Hyung Lee,\(^b\) Jun Yeob Lee,\(^*\)\(^b\) and Youngu Lee\(^*\)\(^a\)

\(^a\) Department of Energy Science & Engineering, DGIST, 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea. E-mail: youngulee@dgist.ac.kr; Tel: +82-53-785-6414; Fax: +82-53-785-6409.

\(^b\) School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea. E-mail: leej17@skku.edu.
Fig. S1 1H NMR spectrum of compound 1’.

Fig. S2 13C NMR spectrum of compound 1’.

6-Bromo-2-indolthiophene (compound 1’). 1H NMR

6-Bromo-2-indolthiophene (compound 1’). 13C NMR
Fig. S3 1H NMR spectrum of compound 2.

Fig. S4 1H NMR spectrum of compound 3.
Fig. S5 13C NMR spectrum of compound 3.

Fig. S6 1H NMR spectrum of DBF-d-PO.
Fig. S7 1H NMR spectrum of DBT-d-PO.

Fig. S8 1H NMR spectrum of DBF-d-Py.
Fig. S9 13C NMR spectrum of DBF-d-Py.

Fig. S10 1H NMR spectrum of DBT-d-Py.
Fig. S11 13C NMR spectrum of DBT-d-Py.
Fig. S12 (a, b) DSC traces of DBF-d-PO and DBT-d-PO and (c, d) DTA traces of DBF-d-Py and DBT-d-Py.
Fig. S13 AFM topographic images of DBF-d-PO, DBT-d-PO, DBF-d-Py, and DBT-d-Py before thermal annealing treatment.
Fig. S14 AFM topographic images of DBF-d-PO, DBT-d-PO, DBF-d-Py, and DBT-d-Py after thermal annealing treatment (85 °C, 24 h).
Fig. S15 UV-vis absorption spectra of DBF-d-PO, DBT-d-PO, DBF-d-Py, and DBT-d-Py in film.
Fig. S16 Reduction traces of DBF-d-PO, DBT-d-PO, DBF-d-Py, and DBT-d-Py in CV.