Electronic supporting information for paper

Pyrroolidinium containing perovskites of thermal stability and water resistance for photovoltaics

Alex Fan Xua, Ryan Taoran Wanga, Lory Wenjuan Yanga, Ray LaPierreb, Nebile Isik Goktasb and Gu Xu**

a Department of Materials Science and Engineering, McMaster University, 1280 Main ST W, Hamilton, ON, Canada L8S 4L8.

b Department of Engineering Physics, McMaster University, 1280 Main ST W, Hamilton, ON, Canada L8S 4L8

Fig S1. P-XRD of PyPbI\textsubscript{3}.

![Graph of X-ray diffraction pattern for PyPbI\textsubscript{3}](image)
Fig S2. H-NMR result of the PyPbI₃ product.

Fig S3. TGA curve of PyPbI₃. The product started weight dropping at 218°C, which indicates the original structure of PyPbI₃ remains stable even beyond 200°C. This is much higher than the phase transformation temperature of MAPbI₃, which is only around 55°C. The weight loss then continues throughout the rest of the curve till 600 °C, where the PyPbI₃ decomposes completely.
Fig S5. The FTIR spectra of the PyPbI\(_3\) thin film. No sharp bands appear at \(\mu<840\) cm\(^{-1}\) or \(\mu>3500\) cm\(^{-1}\), which means there is no water exist in the material. This is not surprising, considering that the PyPbI\(_3\) product was annealed at 120\(^\circ\)C to form the thin film. All the other bands in the spectra can be assigned unambiguously to the pyrrolidinium cations. Moreover, their broadness is a clear indication of their orientational disorder, which was also confirmed by our single crystal XRD results. Obviously, the vibrations of the Pb-I skeleton are not visible in the explored wavenumber range.

Fig S4. Crystal structure of (C\(_4\)H\(_8\)NH\(_2\))PbI\(_3\); lead yellow, iodine purple, carbon black, nitrogen blue and hydrogen grey. Reprinted with permission from ref. 26.