Supporting information

Solution-processable zinc oxide nanorods and reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor

Zhe Zhou,a Fei Xiu,a Tongfen Jiang,a Jingxuan Xu,a Jie Chen,a Juqing Liu*,a and Wei Huang*,a,b,c

a Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. E-mail: iamjqliu@njtech.edu.cn; wei-huang@njtech.edu.cn

b Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

c Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China.
Figure S1. The dependence of sheet resistance on bending cycles for rGO thin film (black line) and ITO electrodes (red line).

Figure S2. Retention of the memristor underwent bending cycles up to 1000.