Supplementary information for

Electric dipole moment-assisted charge extraction and effective defect passivation in PH1000-based perovskite solar cells by incorporating PCBM and TIPD into CH$_3$NH$_3$PbI$_3$ layer

Yujuan Weng,§ Zhitao Shen,§ Mingxuan Guo, Fan Wu, Fumin Li, Liangxin Zhu, Lanyu Ling, Chong Chen

§Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, P.R.China,

School of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China

School of science and key lab of optoelectronic material and device, Huzhou University, Huzhou, 313000, P.R.China

1. First-principles calculations

Electronic structure calculations are performed with the density functional theory as implemented in the Vienna ab initio simulation package,1,2 employing projected augmented wave potentials to describe the atomic core electrons and a plane wave basis set with a kinetic energy cutoff of 480 eV to expand the Kohn–Sham electronic states. For the exchange and correlation functional, we used the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) form.3 In order to account for interactions between CH$_3$NH$_3$PbI$_3$ and TIPD, a periodic slab model was constructed. A 2 × 2 (17.6 Å × 17.6 Å) tetragonal CH$_3$NH$_3$PbI$_3$ (001) surface with 5 atomic layers was cut from the optimized bulk geometry in a previous study.4 The TIPD molecule was adsorbed on one of the surfaces, and a 20 Å vacuum layer was added along the z direction. The Brillouin zone sampling was restricted to the Γ point due to the large supercell size, which consists of 259 atoms in total. The DFT-D3 method with Becke-Jonson damping5 was adopted to include van der Waals interactions. During structural optimization, the three atomic layers of CH$_3$NH$_3$PbI$_3$ far away from the TIPD were fixed, and the other two atomic layers of CH$_3$NH$_3$PbI$_3$ and the TIPD were relaxed until the residual forces were less than 0.05 eV Å$^{-1}$. Static calculations based on the optimized geometry were performed for the charge density analysis.

In addition, an isolated MA molecule was optimized using the B3LYP6,7 exchange and correlation

E-mail: chongchen@henu.edu.cn (Dr. Chong Chen)
functional combining with the aug-cc-pVDZ basis set to obtain its electric dipole moment, electronic
density and electrostatic potential (ESP). The calculations were performed by Gaussian 09 program.8

References:

8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al., Gaussian 09 (Revision D.01), Gaussian Inc.,
 Wallingford CT, 2013.
Fig. S1 XRD patterns of the prepared TIPD films dried at 25°C and 100°C, respectively.
Fig. S2 Electrochemical impedance spectra (EIS) of the PSCs under illumination 100 mW/cm².

Table S1 The fitting parameters for measured EIS results with different device.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_s (Ωˑcm²)</th>
<th>R_{CT1} (mA cm⁻²)</th>
<th>R_{CT2} (mA cm⁻²)</th>
<th>CPE_1 (μF cm⁻²)</th>
<th>CPE_2 (nF cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSCs with PCBM:TIPD-blended anti-solvent treatment</td>
<td>22.81</td>
<td>774.9</td>
<td>274.4</td>
<td>2.28</td>
<td>6.27</td>
</tr>
<tr>
<td>PSCs with CBZ anti-solvent treatment</td>
<td>38.64</td>
<td>1875</td>
<td>452.6</td>
<td>1.56</td>
<td>11.9</td>
</tr>
</tbody>
</table>