Supporting Information

NIR Persistent Luminescence of Phosphor Zn$_{1.3}$Ga$_{1.4}$Sn$_{0.3}$O$_4$: Yb$^{3+}$, Er$^{3+}$, Cr$^{3+}$ with Excitation of 980 nm Laser

Jin Qin, Jinmeng Xiang, Hao Suo, Yuhua Chen, Zhiyu Zhang, Xiaqi Zhao, Yanfang Wu, Chongfeng Guo*

National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an, 710069, China;

* Corresponding author

E-mail: guocf@nwu.edu.cn (Prof. Guo);

Tel & Fax: ±86-29-88302661

Figure S1. (a) the integrated intensity of green/NIR emission band of ZGSO: Yb, Er, x%Cr ($x=0$-3.0); (b) decay curves of Cr$^{3+}$: 2E ($\lambda_{em} = 694$ nm) state in ZGSO: Yb, Er, x%Cr ($x=0$-3.0) samples under the 980 nm laser excitation.
Figure S2. *PersL* intensity decay curves of 694 nm transition in ZGSO: Cr phosphor at 10s after ceasing irradiation for 10 min with 320, 550 and 980 nm light. The inset provides the corresponding *PersL* spectrum of sample at 30 s after 10 minutes of irradiation.

Figure S3. The three-dimensional and corresponding contour mapping TL spectra of ZGSO: Cr phosphor after irradiated by 254 nm UV light for 10 min;
Figure S4. Diffuse absorption spectrum and (inset) the corresponding $(hfF(R_{\infty}))^{2}$-hv plot of Zn$_{1.3}$Ga$_{1.4}$Sn$_{0.3}$O$_{4}$: Cr, Yb, Er phosphor. The optical band-gap (E_{g}) of Zn$_{1.3}$Ga$_{1.4}$Sn$_{0.3}$O$_{4}$: Cr, Yb, Er can be estimated by the Kubelka-Munk formula: $a = -Lg(R)$ and $F(R_{\infty}) = S \times (1 - R)^{2} / (2 \times R)$ as well as $(hv \times F(R_{\infty}))^{2} = A \times (hv - E_{g})$, where a, R and S are the absorption, reflection and diffusion coefficients, respectively, A denotes proportional constant. According to the intercepts of the blue dashed straight line, the value of E_{g} is calculated to be 4.71 eV.