Supporting Information

Highly stable CdTe quantum dots hosted in gypsum via a flocculation-precipitation method

Yajing Chang, Xiaopeng Cheng, Jinhua Zhang and Dabin Yu*

State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, Anhui, 230037, P. R. China

Corresponding Author

E-mails: dabinyu@sina.cn (D. Yu)
Table S1 Fluorescence characters of CdTe QDs with different sizes.

<table>
<thead>
<tr>
<th>CdTe QDs</th>
<th>QDs size (nm)</th>
<th>Absorption peak (nm)</th>
<th>Emission peak (nm)</th>
<th>FWHM (nm)</th>
<th>PLQY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>506</td>
<td>552</td>
<td>56</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>518</td>
<td>569</td>
<td>64</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>532</td>
<td>584</td>
<td>67</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>561</td>
<td>621</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>

Fig. S1 True color image of the incorporation and flocculation process of CdTe-gypsum nanocomposites (a) under daylight and (b) under 365 nm UV lamp.

Table S2 Fluorescence characters of CdTe-gypsum nanocomposites with different QDs sizes.

<table>
<thead>
<tr>
<th>CdTe-gypsum</th>
<th>QDs size (nm)</th>
<th>Absorption peak (nm)</th>
<th>Emission peak (nm)</th>
<th>FWHM (nm)</th>
<th>PLQY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>507</td>
<td>561</td>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>518</td>
<td>586</td>
<td>53</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>538</td>
<td>610</td>
<td>63</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>567</td>
<td>630</td>
<td>72</td>
<td>27</td>
</tr>
</tbody>
</table>
Fig. S2 XRD pattern of CdTe-gypsum nanocomposites (red curve). As comparison, the standard XRD pattern of gypsum is also provided.

Fig. S3 XRD pattern of the in-situ crystallization process of CdTe-gypsum nanocomposites.
Fig. S4 (a) SEM, (b) TEM, (c) HRTEM and (d) selected area electron diffraction (SEAD) image of CdTe-gypsum nanocomposites.

Fig. S5 FTIR spectra of MPA (blue curve) and CdTe QDs powders (red curve).
Fig. S6 Schematic of MPA capped CdTe QD hosted in gypsum.

Fig. S7 Time-resolved PL decay lifetime of CdTe QDs (black curve) and the corresponding CdTe-gypsum nanocomposites (blue curve) as well as their fitting curves. (λ_{ex} = 370 nm).
Fig. S8 XRD pattern of CdTe QDs after UV irradiation for two days. The blue marks show the existence of Te.

Fig. S9 Digital image of CdTe-gypsum nanocomposites after being stored over 4 years in ambient condition (a) under daylight and (b) 365 nm UV light. (c) PL spectrum of CdTe-gypsum nanocomposites after being stored over 4 years.
Fig. S10 EL spectrum of the WLED crafted by using YAG: Ce$^{3+}$ phosphors excited with a blue InGaN chip.