Supporting information

Highly efficient deep-blue light-emitting copolymers containing phenoxazine: enhanced device efficiency and lifetime by blending a hole transport molecule

Jiajian He,a Zhenqiang Huang,a Zhiqi Huang,a Shengzu Liao,a Feng Peng,ab Zhiming Zhong,ab Ting Guo,a Lei Yinga and Yong Caoa

a Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

b South China Institute of Collaborative Innovation, Dongguan, 523808, China

E-mail: pengfeng2012@163.com (F. Peng); name.zzm@gmail.com (Z. M. Zhong); mstguo@scut.edu.cn (T. Guo)
Fig. S1 1H NMR and 13C NMR spectra of monomer PO-Br$_2$.
Fig. S2 TGA curves of copolymers.

Fig. S3 PL spectra of copolymers in (a) toluene and (b) solid films.
Fig. S4 DFT calculation of model molecules.

Fig. S5 PL spectra of copolymers in various solvents.
Fig. S6 (a) J-V-L curves and (b) the energy level alignment of double-layer device II with the structure of ITO/PEDOT:PSS/PVK/EL/CsF/Al.

Fig. S7 CV curves of BCFN.
Fig. S8 UV-vis absorption of BCFN and PL emission of PF-TD2PO1.

Fig. S9 J-V-L curves of blended emitters based devices III with the structure of ITO/PEDOT:PSS/PVK/PF-TD2PO1:BCFN/CsF/Al.
<table>
<thead>
<tr>
<th>Polymer</th>
<th>$\lambda_{\text{abs, toluene}}$ (nm)</th>
<th>$\lambda_{\text{abs, film}}$ (nm)</th>
<th>$\lambda_{\text{PL, toluene}}$ (nm)</th>
<th>$\lambda_{\text{PL, film}}$ (nm)</th>
<th>FWHMa (nm)</th>
<th>FWHMb (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-PO1</td>
<td>387</td>
<td>380</td>
<td>417, 446</td>
<td>455</td>
<td>56</td>
<td>45</td>
</tr>
<tr>
<td>PF-PO2</td>
<td>387</td>
<td>380</td>
<td>417, 454</td>
<td>456</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>PF-TD2PO1</td>
<td>387</td>
<td>381</td>
<td>419, 453</td>
<td>456</td>
<td>73</td>
<td>46</td>
</tr>
</tbody>
</table>

aEvaluated from the PL spectra in toluene solution

bEvaluated from the PL spectra in solid film.