Enhanced photovoltaic effect in Bi$_2$FeMo$_{0.7}$Ni$_{0.3}$O$_6$ ferroelectric thin films by tuning the thickness

Xiaxia Cuia,b, Yong Liabc,* Xiaowei Liab Xihong Haoab,*

a Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China xhhao@imust.cn

b Inner Mongolia Key Laboratory of Ferroelectric-related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China.

c School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China.

Fig. S1 XRD pattern of the BFMNO thin film with $d = 700$ nm.
Fig. S2 (a) The J-V characteristics of the BFMNO thin films with different thickness. (b) The thickness-dependent J_{sc} and V_{oc} of the thin films.

Fig. S3 The time dependence of photocurrent of BFMNO thin film (700 nm) before and after poling.

Fig. S4 (a) The J-E measurements of the BFMNO thin film with $d = 700$ nm at different temperature. (b) The Schottky plots under negative bias voltage.
Fig. S5 The Schottky plots under negative bias voltage and Ohmic plots under positive bias voltage of the thin films with different thickness.

Fig. S6 The capacitance as the function of electric field for the BFMNO thin films.