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Experimental section

Synthesis of Fe2O3 nanoparticles. Fe2O3 nanoparticles were prepared by a simple 

precipitation method. Firstly, 25 mL of 5.4 M NaOH solution was mixed with 25 mL 

of 2.0 M FeCl3 solution under stirring for 30 min at 80 oC. Secondly, the obtained 

Fe(OH)3 gel was dried at 120 oC for 72 h. Subsequently, the red powders were collected, 

and then were washed three times with deionized water and ethanol, respectively. 

Finally, the Fe2O3 nanoparticles were obtained after drying at 60 oC for 12 h.

Synthesis of Fe@graphitic carbon structures. Fe@GC was prepared by a facile CVD 

method. Firstly, Fe2O3 nanoparticles were heated to 550 oC at a rate of 10 oC/min under 

Ar and H2 atmosphere with a flow rate of 200 and 50 sccm, respectively. Secondly, 

C2H2 was pumped into the furnace with a rate of 50 sccm for 25 min. Finally, the black 
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products were collected without any purification after naturally cooled down. To 

investigate MA mechanism, Fe particles were prepared by the same process without 

C2H2. GC structures were obtained from Fe@GC after etching by 1M HCl solutions.

Materials characterization. The morphologies of the materials were investigated by 

Field-emission scanning electron microscopy (FESEM, FEI Apreo). The elemental 

composition was measured by energy-dispersive X-ray spectroscopy (EDS, Oxford 

instruments X-Max). Transmission Electron Microscope (JEM-2100F, JEOL, Japan) 

was employed to measure TEM and HRTEM. The compositions of samples were 

studied by the X-Ray diffraction (XRD) by a Rigaku D/max-RB12 X-Ray 

diffractometer with Cu Kα radiation. The Raman spectra were tested through a 

microscopic confocal Raman spectrometer (Renishaw RM2000) with a wavelength of 

514 nm at room temperature. The magnetization properties of all samples were 

measured by SQUID-VSM at room temperature. The graphitic carbon content was 

determined by the thermogravimetry analysis (TGA). The N2 adsorption and desorption 

isotherms were measured by ASAP 2020 Accelerated Surface Area and Porosimetry 

instrument. The electromagnetic parameters of samples mixed with wax (50 wt.%) were 

measured at 2 ~ 18 GHz using Vector network analyzer (N5245A, Agilent). 

Figure S1. SEM image and XRD pattern of Fe2O3 particles



Figure S2. The SEM images of (a) GC and (b) FPs

Figure S3. (a) the N2 adsorption–desorption curves, and (d) pore size distribution of 

Fe@GC.

Figure S4. The reflection loss colorful mappings of (a) GC and (b) FPs.



Figure S5. The curves of all RLmin values at every frequency of samples.

Figure S6. reflection loss curves (upper region) and dependence of matching thickness 

on matching frequency at the wavelength of 1/4λ (lower region) of (a) GC and (b) FPs.



Figure S7. Cole-Cole plots of (a) GC and (b) FPs

Figure S8. The attenuation constant (α) of these samples.

Equation S1:

  (S1)
𝛼 =  

2𝜋𝑓
𝑐

× (𝜇''𝜀'' ‒ 𝜇'𝜀') + (𝜇''𝜀'' ‒ 𝜇'𝜀') + (𝜇''𝜀' + 𝜇'𝜀'')

The ε′ and ε′′ are real and imaginary parts of permittivity, µ′ and µ′′ are real and 

imaginary parts of permeability, f is the frequency of microwave, c is the velocity of 

electromagnetic wave in free space.



Table S1. Microwave absorption properties of various carbon-based materials dispersed in wax matrix in recent years

Minimum RL The widest EAB (RL ≤ -10 dB)

Absorbers
Mass ratio 

(wt. %)
Matching 

thickness (mm)

RLmin value (dB) 

(Frequency, GHz)
EAB (Range, GHz)

Matching 

thickness (mm)

RLmin value (dB) 

(Frequency, GHz)
EAB (Range, GHz)

Ref.

Fe3O4/Fe@C nanorings 40 5.0 -28.18 (4.94) ~ 1.7 (3.6 - 5.3) 2.0 ~ -15.0 (~14.2) 4.05 (12.80 - 16.85) 1

Fe3O4-Fe/Graphene Sheets 18 4.6 -58.0 (5.2) ~ 1.6 (4.5 - 6.1) 2.0 ~ -31.0 (~14.0) 6.2 (11.8 - 18.0) 2

Fe/C porous nanofibers 25 4.29 -56.6 (4.96) ~ 1.3 (4.1 - 5.4) 2.0 -26.10 (11.68) 3.0 (10.5 - 13.5) 3

Graphene/Fe 20 2.5 -31.5 (14.2) 4.7 (12.4 -17.1) 2.5 -31.5 (14.2) 4.7 (12.4 - 17.1) 4

Graphene-coated Fe 40 3.0 -45.0 (7.1) ~ 2.6 (5.9 - 8.5) 2.0 ~ -27.0 (~ 11. 6) 4.4 (9.7 - 14.1) 5

Porous graphene-Fe3O4 30 6.1 -53.0 (5.4) ~ 2.7 (4.4 - 7.1) 2.7 ~ -26.0 5.4 (12.6 - 18.0) 6

Fe-Fe3O4@C 50 2.0 -32.9 (17.1) ~ 4.0 3.0 ~ -28.0 (~ 11.0) 4.1 (9.0 - 13.1) 7

FeCo alloy/carbon 40 2.0 -33.0 (10.3) 3.3 (8.8 - 12.1) 2.0 -33.0 (10.3) 3.3 (8.8 - 12.1) 8

CoS2/rGO 50 2.2 -56.9 (10.9) 4.1 (9.1 - 13.2) 2.2 -56.9 (10.9) 4.1 (9.1 - 13.2) 9

Ni/C nanocomposites 30 2.0 ~ -19.0 (~ 11.0) ~3.2 (9.6 - 12.8) 1.5 -17.6 (~ 15.1) 4.8 (13.2 - 18.0) 10

C@NiCo2O4@Fe3O4 60 3.4 -43.0 (13.4) 2.1 (12.8 - 14.9) 3.4 -43.0 (13.4) 2.1 (12.8 - 14.9) 11

Mesoporous carbon 20 3.2 -50.9 (~ 11.1) 5.4 (9.1 - 14.5) 2.8 ~ -26.0 (~ 11.5) 6.4 (10.6 - 17.0) 12

Hollow carbon sphere 20 2.5 ~ -35.0 ~3.0 1.5 -23.0 4.4 (11.5 - 15.9) 13

Yolk-shell C@C 50 1.85 -39.4 (16.48) - 2.0 -34.8 (15.0) 5.4 (12.6 - 18.0) 14

Fe@GC 50 2.0 -42.17 (12.72) 6.72 (11.28 - 18.00) 2.0 -42.17 (12.72) 6.72 (11.28 - 18.00) Herein

“-“ denotes that it’s unclear.
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