Superconductivity in predicted two dimensional XB₆ (X = Ga, In)

Luo Yan⁵abcdef, Tao Bo⁶, Peng-Fei Liu⁶, Liujiang Zhou⁵, Junrong Zhang⁶, Ming-Hua Tang⁵abcdef, Yong-Guang Xiao⁵abcdef and Bao-Tian Wang⁵abcdefg

⁵ Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China. E-mail: wangbt@ihep.ac.cn
⁶ Spallation Neutron Source Science Center, Dongguan 523808, China.
⁷ Key Laboratory of Key Film Materials & Application for Equipments (Hunan Province), School of Material Sciences and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China. E-mail: ygxiao@xtu.edu.cn
⁸ Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, China.
⁹ Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
⁰ Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
ⁱ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.

Figure S1 (a)Top and (b)side views for the rectangular XB₆ (X = Ga, In) with the second minimum energy. The B, Ga(In) atoms are denoted by red and silvery spheres, respectively.