Supporting Information

Controllable Fabrication of α-Ni(OH)$_2$ Thin Films with Preheating Treatment for Long-term stable Electrochromic and Energy Storage Applications

Chunhua Su, †Meijia Qiu, ‡Yipeng An, ‡Siyuan Sun, †Chuanxi Zhao and ‡Wenjie Mai

† Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.

‡ MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China

§ School of Physics & International United Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China

E-mail: tcxzhao@email.jnu.edu.cn; wenjiemai@email.jnu.edu.cn
Figure S1. (a) The digital photos and (b) loading mass of Ni(OH)$_2$ deposited at 20 °C, 40 °C, 60 °C and 80 °C. (b) The thickness characterization of Ni(OH)$_2$ electrodes deposited under 20 °C, 40 °C, 60 °C and 80 °C.
Figure S2 (a) XRD patterns of Ni(OH)$_2$ thin films which deposited at 40 °C after 100th cycling duration. (b) the corresponding transmittance spectrum.

Figure S3. Survey scan XPS of the treated and untreated Ni(OH)$_2$ EES electrodes.
Figure S4. The corresponding absorption spectra of Ni(OH)$_2$ electrodes.