Protonation-Induced Dual Fluorescence of a Blue Fluorescence

Material with Twisted A-π-D-π-A Configuration

Jingjing Yang ^a, Xing Liu ^a, Zemei Liu ^a, Long Wang ^a, Jing Sun ^a, Zhen Guo ^b, Huixia

Xu^a, Hua Wang *ac, Bo Zhao *a, Guohua Xie *d

- ^a Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
 E-mail: <u>wanghua@tyut.edu.cn</u>; <u>zhaobo01@tyut.edu.cn</u>
- ^b College of Material Science & Engineering, Taiyuan University of Technology, Taiyuan, Taiyuan 030024, P.R. China.
- ^c College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Taiyuan 030024, P.R. China.
- ^d Sauvague Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China.

E-mail: guohua.xie@whu.edu.cn

1. ¹H NMR, ¹³C NMR and mass spectra of CzPA-F-PD in CDCl₃

Fig. S1 ¹H NMR spectrum of CzPA-F-PD in CDCl₃.

Fig. S2 ¹³C NMR spectrum of CzPA-F-PD in CDCl₃.

Fig. S3 Mass spectrum of CzPA-F-PD.

2. Thermogravimetric analysis

Fig. S4 TGA curve of CzPA-F-PD.

3. Electrochemical properties

The HOMO/LUMO level is calculated according to the following formalism:

$$E_{HOMO} = -4.8 - e(\frac{E_{c}^{0X} - E_{f}^{0X}}{f})V$$
(1)
$$E_{g} = 1240/\lambda_{onset}$$
(2)

$$E_{LUMO} = E_{HOMO} + E_g \tag{3}$$

where E_{c}^{OX} is the onset of oxidation potential of CV measurements, and E_{f}^{OX} is the oxidation peak of ferrocene. E_g is estimated from the onset of the absorption spectra.

Fig. S5 (a) Cyclic voltammograms curve of **CzPA-F-PD** and **CzPA-F-PD-H**⁺ in DCM solution; (b) UV-vis absorption spectrum of **CzPA-F-PD** and **CzPA-F-PD-H**⁺.

4. Crystal data of CzPA-F-PD

Fig. S6 (a) Unit cell diagrams for the crystal of CzPA-F-PD. (b) Crystal packing

dia	ıg	rar	n	0	f C	zP	A	-F-F	PD.	

Table	S1	Crystal	data	and	structure	refinem	ent	for	CzP.	A-F	-PD

CzPA-F-PD
C70H68N4
965.28
220.00(13)
triclinic
P-1
12.27610(10)
14.6350(2)
16.8615(2)
110.1380(10)
103.3260(10)
92.4780(10)
2742.54(6)
2
1.169
0.513
1032.0
$0.285 \times 0.125 \times 0.038$
$CuK\alpha (\lambda = 1.54184)$
5.784 to 151.022
$-15 \le h \le 15, -18 \le k \le 17, -15 \le l \le 21$
34996
10851 [$R_{int} = 0.0227, R_{sigma} = 0.0222$]
10851/0/671
1.040
$R_1 = 0.0417, wR_2 = 0.1065$
$R_1 = 0.0469, wR_2 = 0.1129$

5. Solvatochromic effect

Lippert-Mataga equation can be used to understand the influence of solvent environment on the optical properties of our compounds. The equation describes the interaction between solvent and solute dipole moments:

$$hc(v_{a} - v_{f}) = hc(v_{a}^{0} - v_{f}^{0}) - \frac{2(\mu_{e} - \mu_{g})^{2}}{\alpha^{3}}f(\varepsilon, n)$$
(4)

where $f(\varepsilon,n)$ is the orientational polarizability of the solvent, and $f(\varepsilon,n) = \left[\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right]_{\varepsilon}^{\varepsilon}$ and n are the solvent dielectric and the solvent refractive index, respectively; $v_a^0 - v_f^0$ corresponds to the Stokes shifts when $f(\varepsilon,n)$ is zero, μ_e is the excited state dipole moment, μ_g is the ground-state dipole moment. α is the solvent cavity (Onsager) radius, derived from the Avogadro number (N), molecular weight (M),

and density (d=1.0 g/cm³) and $\alpha = (\frac{3M}{4N\pi d})^{1/3}$

The detailed data are listed in Table S2.

 Table S2 Detailed absorption and emission peak positions of CzPA-F-PD in different solvents

		CzPA-F-PD							
solvents	f(ɛ,n)	$v^{a)}_{a}$	$v_f^{b)}$	$v_a - v_f^{c)}$	FWHM				
		[nm]	[nm]	$[cm^{-1}]$	[nm]				
Hexane	0.0012	379	422	2689	46				
Benzene	0.0026	381	433	3152	51				
Toluene	0.012	381	431	3045	49				
Triethylamine	0.048	376	427	3177	49				
Butyl ether	0.096	379	435	3397	57				
Ethyl ether	0.167	375	436	3731	57				
Ethyl acetate	0.2	374	455	4760	71				
Tetrahydrofura	0.21	377	462	4845	73				
n D: (1 1									
formamide	0.276	378	511	6886	104				
Acetone	0.28	380	500	6316	101				
Acetonitrile	0.305	377	529	7622	118				

^{a)} Absorption maximum. ^{b)} Emission maximum. ^{c)} Stokes shifts in different solvents. ^{d)} Full-width at half-maximum.

Fig. S7 (a) UV-vis absorption and (b) PL spectra of **CzPA-F-PD** in different solutions (10⁻⁵ mol/L).

Fig. S8 Fitted linear correlation of the orientation polarization of solvent media with the stokes shift for **CzPA-F-PD**.

6. Photophysical properties

Fig. S9 Partial ¹H NMR spectra in CDCl₃ solution: (a) CzPA-F-PD; (b) CzPA-F-PD
+ 6 equiv. TFA; (c) CzPA-F-PD + 14 equiv. TFA; (d) CzPA-F-PD + 24 equiv. TFA;
(e) CzPA-F-PD + 39 equiv. TFA; (f) CzPA-F-PD-H⁺.

Fig. S10 The PL spectra of CzPA-F-PD in CHCl₃ solution (10^{-5} mol/L) after treated with different equivalents of a) HOAc and b) HCl (0.03 mol/L).

Fig. S11 The PL spectra of (a) **CzPA-F-PD** and (b) **CzPA-F-PD-H**⁺ in the CHCl₃ solution under 77K (delayed 1ms).

Fig. S12 Time-resolved fluorescence of CzPA-F-PD and CzPA-F-PD-H⁺ in CHCl₃ solution (The concentrations of the solutions are 10^{-5} mol /L).

Fig. S13 The PL spectrum of **CzPA-F-PD** and UV spectrum of **CzPA-F-PD-H**⁺ in the CHCl₃ solution with the concentration of 10^{-5} mol/L.