Electronic Supplementary Information

Variation of emission intensity at 618nm for \([\text{EugDO3A}]^{3-}\) and \([\text{EuaDO3A}]^{3-}\) in the presence of a simulated extracellular anionic background (298K). The observed inflection above pH 7.5 corresponds to the onset of binding by carbonate, displacing the water molecules that quench the Eu excited state.

In anionic background at 298 K

Anionic background:
- \(\text{CO}_3^{2-}: 30\, \text{mM},\)
- \(\text{Cl}^-: 100\, \text{mM},\)
- \(\text{H}_2\text{PO}_4^-: 0.9\, \text{mM}\)
- lactate: 2.3 mM
- citrate: 0.13 mM
(i.e. simulating an extracellular environment).
Exchange lifetime t_M

Measurements of the transverse 17O relaxation time at variable temperature.

Fitting the curve to the Swift-Connick equations

$t_M = 30 \text{ ns (i.e. very fast)}$

S2 Variation of the transverse 17O relaxation rate of water as a function of temperature, showing the (Swift-Connick) fit to the experimental data (2.1T, pH = 7).
S3 Variation of the relaxivity of $[\text{Gd(III)DO3A}]^-$ with pH (293K) in a simulated extracellular ionic background (triangles) and in human serum solution.
1 mM Gd complex
1 mM ZnCl₂
pH = 7.0 in phosphate buffer ([KH₂PO₄] = 0.026 mol/L, [Na₂HPO₄] = 0.041 mol/L).

At 65 MHz; 293 K

Thermodynamic (T.I.) and kinetic (K.I.) index

<table>
<thead>
<tr>
<th>Complex</th>
<th>T.I.</th>
<th>K.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd(DO)₃A</td>
<td>0.69</td>
<td>2760</td>
</tr>
<tr>
<td>Gd(DO)₃A</td>
<td>0.95</td>
<td>¥</td>
</tr>
<tr>
<td>Gd(DOTA)</td>
<td>0.99</td>
<td>¥</td>
</tr>
<tr>
<td>Gd(DOTA)</td>
<td>0.99</td>
<td>¥</td>
</tr>
<tr>
<td>GdDTPA</td>
<td>0.49</td>
<td>260</td>
</tr>
</tbody>
</table>

T.I. \(R_{1p(3\text{days})}/R_{1p(0)} \); S.I. Time for \(R_{1p(t)}/R_{1p(0)} = 0.80 \)

S4 and S-5 Empirical screen of complex stability by monitoring the change in the relaxivity of the stated Gd complexes as a function of time, following the methods of Laurent and Muller. Note the high kinetic and thermodynamic stability indices with respect to [GdDTPA]²⁻.