Figure S1. Imino region of the NOESY spectra of [Ac-Cys-Gly-Ala-Hse(p^3'dGCATGC)-Ala-OH]_2[S-S] in H$_2$O (100mM NaCl, T=5°C, pH=7, $\tau_m=200$ ms).
Figure S2. NMR and UV melting curves of [Ac-Cys-Gly-Ala-Hse(p³dGCATGC)-Ala-OH]₂[S-S]. Top: Chemical shift variation versus temperature for H5C2 and H2A3. Middle: Chemical shift variation of the thymine methyl resonance. Nucleopeptide concentrations are 1 mM (solid lines), and 0.1 mM (dashed lines). Bottom: UV melting curve at 2 µM nucleopeptide concentration.
Table S1. 1H-NMR assignments of [Ac-Cys-Gly-Ala-Hse(p$^3'$dCGATCG)-Ala]-[p$^3'$dCGATGC] (100mM NaCl, T=5°C, pH=7).

<table>
<thead>
<tr>
<th>Res.</th>
<th>H4'</th>
<th>H1'</th>
<th>H6/H8</th>
<th>H2'</th>
<th>H2"</th>
<th>H3'</th>
<th>H5'</th>
<th>H2/H5/M</th>
<th>NH2 (2)</th>
<th>NH2 (1)</th>
<th>NH</th>
<th>HN</th>
<th>HA</th>
<th>HB2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CYT</td>
<td>4.08</td>
<td>5.76</td>
<td>7.68</td>
<td>2.06</td>
<td>2.46</td>
<td>4.74</td>
<td>3.73</td>
<td>5.945</td>
<td>8.17</td>
<td>7.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2GUA</td>
<td>4.39</td>
<td>6.00</td>
<td>8.06</td>
<td>2.79</td>
<td>2.79</td>
<td>5.02</td>
<td>4.15</td>
<td>12.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3THY</td>
<td>4.24</td>
<td>5.59</td>
<td>7.38</td>
<td>2.18</td>
<td>2.45</td>
<td>4.92</td>
<td>4.15</td>
<td>1.60</td>
<td>13.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4ADE</td>
<td>4.47</td>
<td>6.32</td>
<td>8.40</td>
<td>2.80</td>
<td>2.93</td>
<td>5.08</td>
<td>4.14</td>
<td>7.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5CYT</td>
<td>4.14</td>
<td>5.71</td>
<td>7.36</td>
<td>1.83</td>
<td>2.31</td>
<td>4.84</td>
<td>4.27</td>
<td>5.47</td>
<td>8.38</td>
<td>6.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6GUA</td>
<td>4.38</td>
<td>6.23</td>
<td>7.99</td>
<td>2.74</td>
<td>2.56</td>
<td>4.97</td>
<td>4.97</td>
<td>13.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13CYS</td>
<td>8.77</td>
<td>4.90</td>
<td>3.04/3.31</td>
<td></td>
</tr>
<tr>
<td>14GLY</td>
<td>8.96</td>
<td>4.07/3.97</td>
<td></td>
</tr>
<tr>
<td>15ALA</td>
<td>8.34</td>
<td>4.38</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>16HSE</td>
<td>8.63</td>
<td>4.48</td>
<td>2.08/2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
<td>HG2</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>17ALA</td>
<td>8.09</td>
<td>4.08</td>
<td>1.36</td>
<td></td>
</tr>
</tbody>
</table>

Acetyl terminal group = 1.82 ppm