# Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2004 data_global _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _publ_contact_author_name 'Dr Pierangelo Metrangolo' _publ_contact_author_address ; Department of Chemistry Polytechnic Milan Materials and Chemical Engineering G Natta Via L. Mancinelli 7 Milan 20131 ITALY ; _publ_contact_author_email PIERANGELO.METRANGOLO@POLIMI.IT _publ_section_title ; Metric engineering of perfluorocarbon-hydrocarbon layered solids driven by the halogen bonding ; loop_ _publ_author_name 'Pierangelo Metrangolo' 'Tullio Pilati' 'Giuseppe Resnati' 'Andrea Stevenazzi' data_re97lt _database_code_depnum_ccdc_archive 'CCDC 230372' _audit_creation_method SHELXL-97 _audit_update_record ; July 7th, 2003 Checkcif ; _chemical_name_systematic ; 1,4-dicianobutane 1,2-diiodotetrafluoroethane ; _chemical_formula_moiety 'C6 H8 N2, C2 F4 I2' _chemical_formula_sum 'C8 H8 F4 I2 N2' _chemical_formula_weight 461.96 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P2(1)/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 7.752(2) _cell_length_b 6.3557(14) _cell_length_c 12.991(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.15(3) _cell_angle_gamma 90.00 _cell_volume 637.5(3) _cell_formula_units_Z 2 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 3199 _cell_measurement_theta_min 2.949 _cell_measurement_theta_max 34.965 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.2 _exptl_crystal_size_mid 0.1 _exptl_crystal_size_min 0.05 _exptl_crystal_density_diffrn 2.407 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 424 _exptl_absorpt_coefficient_mu 4.958 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.58191 _exptl_absorpt_correction_T_max 1. _exptl_special_details ; It was very difficult to prepare a crystal for data callection. In fact, the material was obtaiined as an aggregate of crystals that need to be separated under a microscope, but they quickly melt when lit up. Moreover, in our experience, they are immediately dissolved by any kind of glue. After a lot of attempts the crystal used for data collection was prepareded on a glass plate cooled by dry ice and poorly lit up. It was quickly put on a capillary and transferred in the cold nitrogen flux of our Bruker KRIOFLEX low temperature device. During this soperation, the crystal undergo to a partial melting and the recrystallized material obtained acted as a glue to fix the crystal to the capillary. Because the crystal was covered by microcrystalline material constituited not only by recrystallized material but also by water (condensed during di preparation on the glass plate), the crystal was not clearly visible, poorly centered on the diffractometer and it was impossible to measure exactly its dimensions. For all these reasons the obtained data quality were not very good and the absorption correction were only rough. During the data collection the temperature deviation from the fixed value wass less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 11423 _diffrn_reflns_av_R_equivalents 0.0508 _diffrn_reflns_av_sigmaI/netI 0.0700 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 20 _diffrn_reflns_theta_min 2.95 _diffrn_reflns_theta_max 36.21 _reflns_number_total 2935 _reflns_number_gt 2246 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0372P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 2935 _refine_ls_number_parameters 89 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0684 _refine_ls_R_factor_gt 0.0464 _refine_ls_wR_factor_ref 0.0904 _refine_ls_wR_factor_gt 0.0848 _refine_ls_goodness_of_fit_ref 1.012 _refine_ls_restrained_S_all 1.012 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N N 0.5847(5) -0.0471(6) 0.2695(3) 0.0224(8) Uani 1 d . . . C1 C 0.7164(5) -0.0763(6) 0.3154(3) 0.0161(7) Uani 1 d . . . C2 C 0.8819(5) -0.1141(7) 0.3746(3) 0.0166(8) Uani 1 d . . . H1 H 0.975(8) -0.094(9) 0.328(5) 0.047(18) Uiso 1 d . . . H2 H 0.895(6) -0.272(8) 0.391(3) 0.023(13) Uiso 1 d . . . C3 C 0.9131(5) 0.0280(6) 0.4700(3) 0.0123(7) Uani 1 d . . . C4 C 0.0091(5) -0.0822(6) 0.0438(3) 0.0113(7) Uani 1 d . . . H3 H 0.908(5) 0.164(7) 0.457(3) 0.000(9) Uiso 1 d . . . H4 H 0.824(7) 0.014(8) 0.525(4) 0.022(13) Uiso 1 d . . . I I 0.24708(3) -0.05568(4) 0.140232(16) 0.01252(7) Uani 1 d . . . F1 F -0.1261(3) -0.0572(4) 0.10170(17) 0.0162(5) Uani 1 d . . . F2 F -0.0044(3) -0.2761(3) 0.00148(15) 0.0163(5) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N 0.0194(18) 0.030(2) 0.0169(14) 0.0037(14) -0.0014(12) -0.0010(16) C1 0.0158(19) 0.018(2) 0.0140(14) -0.0002(13) -0.0015(13) -0.0016(15) C2 0.0137(18) 0.022(2) 0.0133(15) -0.0035(14) -0.0015(13) 0.0031(16) C3 0.0118(17) 0.0120(19) 0.0123(14) -0.0012(12) -0.0034(11) 0.0011(14) C4 0.0097(16) 0.0116(18) 0.0124(13) -0.0004(12) -0.0002(11) -0.0024(13) I 0.01063(11) 0.01540(13) 0.01073(9) 0.00012(9) -0.00340(7) -0.00043(10) F1 0.0107(10) 0.0225(13) 0.0158(9) 0.0021(9) 0.0028(8) -0.0011(10) F2 0.0196(13) 0.0093(10) 0.0192(10) -0.0022(8) -0.0029(9) -0.0020(9) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N C1 1.150(5) . NO C1 C2 1.455(6) . NO C2 C3 1.535(5) . NO C2 H1 0.99(6) . NO C2 H2 1.03(5) . NO C3 C3 1.536(7) 3_756 NO C3 H3 0.88(4) . NO C3 H4 1.04(5) . NO C4 F2 1.350(4) . NO C4 F1 1.353(4) . NO C4 C4 1.541(7) 3 NO C4 I 2.142(4) . NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N C1 C2 179.3(4) . . NO C1 C2 C3 113.4(3) . . NO C1 C2 H1 108(4) . . NO C3 C2 H1 110(4) . . NO C1 C2 H2 110(3) . . NO C3 C2 H2 113(2) . . NO H1 C2 H2 101(4) . . NO C2 C3 C3 109.9(4) . 3_756 NO C2 C3 H3 115(2) . . NO C3 C3 H3 110(3) 3_756 . NO C2 C3 H4 116(3) . . NO C3 C3 H4 104(3) 3_756 . NO H3 C3 H4 101(4) . . NO F2 C4 F1 107.3(3) . . NO F2 C4 C4 108.6(3) . 3 NO F1 C4 C4 107.9(4) . 3 NO F2 C4 I 109.9(2) . . NO F1 C4 I 109.6(2) . . NO C4 C4 I 113.3(3) 3 . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C1 C2 C3 C3 177.8(4) . . . 3_756 NO _diffrn_measured_fraction_theta_max 0.893 _diffrn_reflns_theta_full 36.21 _diffrn_measured_fraction_theta_full 0.893 _refine_diff_density_max 3.042 _refine_diff_density_min -2.240 _refine_diff_density_rms 0.277 #===END data_re98 _database_code_depnum_ccdc_archive 'CCDC 230373' _audit_creation_method SHELXL-97 _audit_update_record ; May 7th, 2003 Checkcif ; _chemical_name_systematic ; 1,4-dicianobutane 1,6-diiodohexadecafluorooctane ; _chemical_formula_moiety 'C6 H6 N2, C8 F16 I2' _chemical_formula_sum 'C14 H8 F16 I2 N2' _chemical_formula_weight 762.02 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 5.3349(6) _cell_length_b 7.3918(8) _cell_length_c 14.6816(18) _cell_angle_alpha 93.480(14) _cell_angle_beta 97.835(15) _cell_angle_gamma 110.882(13) _cell_volume 532.13(11) _cell_formula_units_Z 1 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 5872 _cell_measurement_theta_min 2.821 _cell_measurement_theta_max 35.933 _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 0.29 _exptl_crystal_size_mid 0.22 _exptl_crystal_size_min 0.12 _exptl_crystal_density_diffrn 2.378 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 356 _exptl_absorpt_coefficient_mu 3.099 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.565084 _exptl_absorpt_correction_T_max 0.680451 _exptl_special_details ; The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 15685 _diffrn_reflns_av_R_equivalents 0.0247 _diffrn_reflns_av_sigmaI/netI 0.0236 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -24 _diffrn_reflns_limit_l_max 24 _diffrn_reflns_theta_min 2.82 _diffrn_reflns_theta_max 36.19 _reflns_number_total 4825 _reflns_number_gt 4625 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0398P)^2^+0.3885P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 4825 _refine_ls_number_parameters 170 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0352 _refine_ls_R_factor_gt 0.0332 _refine_ls_wR_factor_ref 0.0791 _refine_ls_wR_factor_gt 0.0780 _refine_ls_goodness_of_fit_ref 1.199 _refine_ls_restrained_S_all 1.199 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N N 0.2292(4) 0.5462(3) 0.40713(16) 0.0235(4) Uani 1 d . . . C1 C 0.0985(4) 0.6383(3) 0.41433(15) 0.0181(3) Uani 1 d . . . C2 C -0.0629(4) 0.7594(3) 0.42432(15) 0.0171(3) Uani 1 d . . . H2A H -0.104(6) 0.802(5) 0.364(2) 0.012(7) Uiso 1 d . . . H2B H -0.236(9) 0.685(6) 0.442(3) 0.035(10) Uiso 1 d . . . C3 C 0.0828(4) 0.9353(3) 0.49749(15) 0.0156(3) Uani 1 d . . . H3A H 0.264(8) 1.007(5) 0.482(3) 0.025(9) Uiso 1 d . . . H3B H 0.109(8) 0.888(6) 0.557(3) 0.029(9) Uiso 1 d . . . C4 C 0.4447(4) 0.0208(3) 0.22257(14) 0.0158(3) Uani 1 d . . . I I 0.36801(3) 0.251979(18) 0.294146(9) 0.01641(4) Uani 1 d . . . F1 F 0.5072(3) -0.0890(2) 0.28531(10) 0.0253(3) Uani 1 d . . . F2 F 0.6565(3) 0.0915(2) 0.17863(12) 0.0251(3) Uani 1 d . . . C5 C 0.1948(4) -0.1111(3) 0.15138(14) 0.0142(3) Uani 1 d . . . F3 F 0.1173(3) 0.0023(2) 0.09502(10) 0.0226(3) Uani 1 d . . . F4 F -0.0076(3) -0.1980(2) 0.19784(10) 0.0216(3) Uani 1 d . . . C6 C 0.2452(4) -0.2698(3) 0.09033(14) 0.0148(3) Uani 1 d . . . F5 F 0.3853(3) -0.3546(2) 0.14389(11) 0.0252(3) Uani 1 d . . . F6 F 0.3972(3) -0.1819(2) 0.02905(11) 0.0247(3) Uani 1 d . . . C7 C -0.0217(4) -0.4334(3) 0.03871(14) 0.0141(3) Uani 1 d . . . F7 F -0.1912(3) -0.3514(2) 0.00059(11) 0.0230(3) Uani 1 d . . . F8 F -0.1363(3) -0.5435(2) 0.10221(10) 0.0246(3) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N 0.0213(9) 0.0206(9) 0.0290(10) -0.0026(7) 0.0045(7) 0.0091(7) C1 0.0168(8) 0.0167(8) 0.0192(9) -0.0016(7) 0.0023(7) 0.0053(7) C2 0.0156(8) 0.0171(8) 0.0191(8) -0.0026(6) 0.0004(6) 0.0084(7) C3 0.0137(7) 0.0160(8) 0.0169(8) -0.0017(6) -0.0002(6) 0.0068(6) C4 0.0150(8) 0.0147(8) 0.0168(8) -0.0007(6) -0.0003(6) 0.0061(6) I 0.01635(6) 0.01371(6) 0.01701(7) -0.00398(4) -0.00032(4) 0.00501(4) F1 0.0327(8) 0.0205(6) 0.0212(6) -0.0024(5) -0.0102(6) 0.0143(6) F2 0.0153(6) 0.0226(7) 0.0323(8) -0.0065(6) 0.0079(5) 0.0013(5) C5 0.0140(7) 0.0143(7) 0.0139(7) -0.0006(6) 0.0008(6) 0.0055(6) F3 0.0321(7) 0.0186(6) 0.0178(6) -0.0021(5) -0.0068(5) 0.0150(6) F4 0.0158(6) 0.0227(6) 0.0213(6) -0.0052(5) 0.0072(5) 0.0011(5) C6 0.0138(7) 0.0129(7) 0.0163(8) -0.0010(6) 0.0024(6) 0.0040(6) F5 0.0257(7) 0.0202(6) 0.0295(7) -0.0059(5) -0.0095(6) 0.0146(6) F6 0.0234(7) 0.0187(6) 0.0250(7) -0.0045(5) 0.0129(5) -0.0027(5) C7 0.0133(7) 0.0122(7) 0.0153(7) -0.0004(6) 0.0024(6) 0.0032(6) F7 0.0186(6) 0.0229(6) 0.0271(7) -0.0072(5) -0.0050(5) 0.0121(5) F8 0.0303(7) 0.0173(6) 0.0184(6) -0.0015(5) 0.0112(5) -0.0027(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N C1 1.145(3) . NO C1 C2 1.460(3) . NO C2 C3 1.527(3) . NO C2 H2A 0.98(3) . NO C2 H2B 0.97(4) . NO C3 C3 1.521(4) 2_576 NO C3 H3A 0.99(4) . NO C3 H3B 0.97(4) . NO C4 F2 1.336(3) . NO C4 F1 1.348(2) . NO C4 C5 1.546(3) . NO C4 I 2.142(2) . NO C5 F3 1.340(2) . NO C5 F4 1.343(2) . NO C5 C6 1.554(3) . NO C6 F6 1.335(2) . NO C6 F5 1.343(2) . NO C6 C7 1.559(3) . NO C7 F7 1.339(2) . NO C7 F8 1.341(2) . NO C7 C7 1.553(4) 2_545 NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N C1 C2 178.8(2) . . NO C1 C2 C3 112.23(18) . . NO C1 C2 H2A 108.4(18) . . NO C3 C2 H2A 110.6(19) . . NO C1 C2 H2B 111(2) . . NO C3 C2 H2B 107(2) . . NO H2A C2 H2B 107(3) . . NO C3 C3 C2 111.1(2) 2_576 . NO C3 C3 H3A 111(2) 2_576 . NO C2 C3 H3A 108(2) . . NO C3 C3 H3B 109(2) 2_576 . NO C2 C3 H3B 108(2) . . NO H3A C3 H3B 108(3) . . NO F2 C4 F1 107.79(18) . . NO F2 C4 C5 108.70(17) . . NO F1 C4 C5 108.69(17) . . NO F2 C4 I 110.96(14) . . NO F1 C4 I 108.50(14) . . NO C5 C4 I 112.08(13) . . NO F3 C5 F4 108.78(17) . . NO F3 C5 C4 108.23(16) . . NO F4 C5 C4 108.02(16) . . NO F3 C5 C6 107.89(16) . . NO F4 C5 C6 109.06(16) . . NO C4 C5 C6 114.73(16) . . NO F6 C6 F5 108.26(17) . . NO F6 C6 C5 108.02(16) . . NO F5 C6 C5 109.27(16) . . NO F6 C6 C7 109.82(17) . . NO F5 C6 C7 107.78(16) . . NO C5 C6 C7 113.57(16) . . NO F7 C7 F8 109.04(17) . . NO F7 C7 C7 108.2(2) . 2_545 NO F8 C7 C7 108.8(2) . 2_545 NO F7 C7 C6 109.06(16) . . NO F8 C7 C6 107.27(16) . . NO C7 C7 C6 114.3(2) 2_545 . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N C1 C2 C3 -23(12) . . . . NO C1 C2 C3 C3 176.8(2) . . . 2_576 NO F2 C4 C5 F3 -69.1(2) . . . . NO F1 C4 C5 F3 173.82(17) . . . . NO I C4 C5 F3 53.91(19) . . . . NO F2 C4 C5 F4 173.26(17) . . . . NO F1 C4 C5 F4 56.2(2) . . . . NO I C4 C5 F4 -63.72(18) . . . . NO F2 C4 C5 C6 51.4(2) . . . . NO F1 C4 C5 C6 -65.7(2) . . . . NO I C4 C5 C6 174.42(13) . . . . NO F3 C5 C6 F6 47.3(2) . . . . NO F4 C5 C6 F6 165.35(17) . . . . NO C4 C5 C6 F6 -73.4(2) . . . . NO F3 C5 C6 F5 164.91(17) . . . . NO F4 C5 C6 F5 -77.1(2) . . . . NO C4 C5 C6 F5 44.2(2) . . . . NO F3 C5 C6 C7 -74.7(2) . . . . NO F4 C5 C6 C7 43.3(2) . . . . NO C4 C5 C6 C7 164.57(17) . . . . NO F6 C6 C7 F7 -75.3(2) . . . . NO F5 C6 C7 F7 166.95(17) . . . . NO C5 C6 C7 F7 45.8(2) . . . . NO F6 C6 C7 F8 166.71(17) . . . . NO F5 C6 C7 F8 49.0(2) . . . . NO C5 C6 C7 F8 -72.2(2) . . . . NO F6 C6 C7 C7 46.0(3) . . . 2_545 NO F5 C6 C7 C7 -71.7(3) . . . 2_545 NO C5 C6 C7 C7 167.1(2) . . . 2_545 NO _diffrn_measured_fraction_theta_max 0.945 _diffrn_reflns_theta_full 36.19 _diffrn_measured_fraction_theta_full 0.945 _refine_diff_density_max 2.443 _refine_diff_density_min -1.309 _refine_diff_density_rms 0.171 #===END data_re99 _database_code_depnum_ccdc_archive 'CCDC 230374' _audit_creation_method SHELXL-97 _audit_update_record ; May 7th, 2003 Checkcif ; _chemical_name_systematic ; 1,4-dicianobutane 1,4-diiodooctafluorobutane ; _chemical_formula_moiety 'C6 H6 N2, C4 F8 I2' _chemical_formula_sum 'C10 H8 F8 I2 N2' _chemical_formula_weight 561.98 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 5.2447(5) _cell_length_b 7.9197(6) _cell_length_c 9.6803(10) _cell_angle_alpha 84.078(12) _cell_angle_beta 85.711(11) _cell_angle_gamma 75.147(9) _cell_volume 386.09(6) _cell_formula_units_Z 1 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 9712 _cell_measurement_theta_min 2.671 _cell_measurement_theta_max 36.096 _exptl_crystal_description 'rhombic prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 0.19 _exptl_crystal_size_mid 0.13 _exptl_crystal_size_min 0.10 _exptl_crystal_density_diffrn 2.417 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 260 _exptl_absorpt_coefficient_mu 4.152 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.562614 _exptl_absorpt_correction_T_max 0.660340 _exptl_special_details ; Due to the very low melting point, the crystal were always manipuleted on an iced glass sheet. The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 14301 _diffrn_reflns_av_R_equivalents 0.0209 _diffrn_reflns_av_sigmaI/netI 0.0182 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 2.12 _diffrn_reflns_theta_max 36.18 _reflns_number_total 3586 _reflns_number_gt 3427 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0255P)^2^+0.0924P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 3586 _refine_ls_number_parameters 116 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0201 _refine_ls_R_factor_gt 0.0184 _refine_ls_wR_factor_ref 0.0448 _refine_ls_wR_factor_gt 0.0441 _refine_ls_goodness_of_fit_ref 1.068 _refine_ls_restrained_S_all 1.068 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N N 0.3325(3) 0.37780(18) 0.13554(15) 0.0234(2) Uani 1 d . . . C1 C 0.1773(3) 0.30846(18) 0.11024(16) 0.0191(2) Uani 1 d . . . C2 C -0.0198(3) 0.2192(2) 0.07654(19) 0.0232(3) Uani 1 d . . . H2A H -0.126(6) 0.293(4) 0.009(3) 0.045(8) Uiso 1 d . . . H2B H -0.140(6) 0.199(4) 0.172(3) 0.052(9) Uiso 1 d . . . C3 C 0.1059(3) 0.04110(18) 0.02144(15) 0.0165(2) Uani 1 d . . . H3A H 0.218(5) 0.060(3) -0.058(3) 0.027(6) Uiso 1 d . . . H3B H 0.207(5) -0.031(3) 0.090(2) 0.022(5) Uiso 1 d . . . I I 0.557118(16) 0.611791(10) 0.289994(8) 0.01583(3) Uani 1 d . . . C4 C 0.6937(3) 0.78554(17) 0.40595(14) 0.0152(2) Uani 1 d . . . C5 C 0.4607(2) 0.93150(16) 0.45952(13) 0.01356(19) Uani 1 d . . . F1 F 0.82674(19) 0.69552(12) 0.51411(10) 0.02301(18) Uani 1 d . . . F2 F 0.86024(19) 0.86118(13) 0.32431(11) 0.02343(18) Uani 1 d . . . F3 F 0.32844(19) 1.01715(12) 0.34901(10) 0.02073(17) Uani 1 d . . . F4 F 0.29999(18) 0.85377(12) 0.54264(10) 0.02016(16) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N 0.0259(6) 0.0212(6) 0.0264(6) -0.0087(5) -0.0010(5) -0.0092(5) C1 0.0211(6) 0.0148(5) 0.0225(6) -0.0055(5) -0.0022(5) -0.0045(4) C2 0.0189(6) 0.0165(6) 0.0365(8) -0.0089(5) -0.0066(5) -0.0046(5) C3 0.0177(5) 0.0142(5) 0.0189(5) -0.0029(4) -0.0041(4) -0.0050(4) I 0.01891(4) 0.01270(4) 0.01735(4) -0.00522(3) -0.00209(3) -0.00477(3) C4 0.0154(5) 0.0143(5) 0.0172(5) -0.0036(4) -0.0022(4) -0.0045(4) C5 0.0161(5) 0.0117(4) 0.0145(5) -0.0019(4) -0.0024(4) -0.0057(4) F1 0.0249(4) 0.0177(4) 0.0252(4) -0.0052(3) -0.0122(3) 0.0013(3) F2 0.0222(4) 0.0243(4) 0.0279(5) -0.0104(4) 0.0077(3) -0.0126(3) F3 0.0258(4) 0.0165(4) 0.0201(4) -0.0031(3) -0.0119(3) -0.0020(3) F4 0.0211(4) 0.0181(4) 0.0251(4) -0.0067(3) 0.0057(3) -0.0119(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N C1 1.1451(19) . NO C1 C2 1.465(2) . NO C2 C3 1.528(2) . NO C2 H2A 0.94(3) . NO C2 H2B 1.10(3) . NO C3 C3 1.525(3) 2 NO C3 H3A 0.96(3) . NO C3 H3B 0.93(2) . NO I C4 2.1474(13) . NO C4 F1 1.3384(16) . NO C4 F2 1.3466(16) . NO C4 C5 1.5505(19) . NO C5 F4 1.3412(15) . NO C5 F3 1.3437(15) . NO C5 C5 1.554(2) 2_676 NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N C1 C2 179.41(17) . . NO C1 C2 C3 112.46(12) . . NO C1 C2 H2A 107.4(18) . . NO C3 C2 H2A 109.9(18) . . NO C1 C2 H2B 108.3(17) . . NO C3 C2 H2B 108.4(17) . . NO H2A C2 H2B 110(2) . . NO C3 C3 C2 110.58(14) 2 . NO C3 C3 H3A 109.5(15) 2 . NO C2 C3 H3A 107.4(15) . . NO C3 C3 H3B 110.8(14) 2 . NO C2 C3 H3B 109.1(14) . . NO H3A C3 H3B 109(2) . . NO F1 C4 F2 107.70(11) . . NO F1 C4 C5 109.29(11) . . NO F2 C4 C5 108.71(11) . . NO F1 C4 I 110.15(9) . . NO F2 C4 I 109.58(9) . . NO C5 C4 I 111.32(8) . . NO F4 C5 F3 108.81(11) . . NO F4 C5 C4 107.80(10) . . NO F3 C5 C4 107.85(11) . . NO F4 C5 C5 108.72(13) . 2_676 NO F3 C5 C5 108.09(13) . 2_676 NO C4 C5 C5 115.43(13) . 2_676 NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C1 C2 C3 C3 -176.13(15) . . . 2 NO F1 C4 C5 F4 -61.53(13) . . . . NO F2 C4 C5 F4 -178.83(10) . . . . NO I C4 C5 F4 60.37(12) . . . . NO F1 C4 C5 F3 -178.86(10) . . . . NO F2 C4 C5 F3 63.84(13) . . . . NO I C4 C5 F3 -56.96(12) . . . . NO F1 C4 C5 C5 60.19(17) . . . 2_676 NO F2 C4 C5 C5 -57.11(17) . . . 2_676 NO I C4 C5 C5 -177.91(11) . . . 2_676 NO _diffrn_measured_fraction_theta_max 0.966 _diffrn_reflns_theta_full 36.18 _diffrn_measured_fraction_theta_full 0.966 _refine_diff_density_max 1.413 _refine_diff_density_min -0.625 _refine_diff_density_rms 0.113 #===END _chemical_name_common '1,4-dicianobutane 1,4-diiodooctafluorobutane' data_re103 _database_code_depnum_ccdc_archive 'CCDC 230375' _audit_creation_method SHELXL-97 _audit_update_record ; May 7th, 2003 Checkcif ; _chemical_name_systematic ; 1,4-dicianobutane 1,6-diiodododecafluorohexane ; _chemical_formula_moiety 'C6 H8 N2, C6 F12 I2' _chemical_formula_sum 'C12 H8 F12 I2 N2' _chemical_formula_weight 662.00 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 5.3183(8) _cell_length_b 7.0369(11) _cell_length_c 13.415(2) _cell_angle_alpha 75.865(8) _cell_angle_beta 86.012(12) _cell_angle_gamma 71.855(9) _cell_volume 462.63(12) _cell_formula_units_Z 1 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 7304 _cell_measurement_theta_min 3.132 _cell_measurement_theta_max 30.646 _exptl_crystal_description 'rhombic prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.11 _exptl_crystal_density_diffrn 2.376 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 308 _exptl_absorpt_coefficient_mu 3.515 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.558678 _exptl_absorpt_correction_T_max 0.670320 _exptl_special_details ; The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 11424 _diffrn_reflns_av_R_equivalents 0.0271 _diffrn_reflns_av_sigmaI/netI 0.0311 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.57 _diffrn_reflns_theta_max 35.93 _reflns_number_total 4056 _reflns_number_gt 3722 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0440P)^2^+1.8292P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 4056 _refine_ls_number_parameters 143 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0446 _refine_ls_R_factor_gt 0.0388 _refine_ls_wR_factor_ref 0.1029 _refine_ls_wR_factor_gt 0.0909 _refine_ls_goodness_of_fit_ref 1.137 _refine_ls_restrained_S_all 1.137 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I I 0.64212(4) 0.42219(3) 0.264573(17) 0.01677(6) Uani 1 d . . . C4 C 0.9535(6) 0.2626(5) 0.1776(3) 0.0172(5) Uani 1 d . . . C5 C 0.8450(6) 0.1680(5) 0.1033(2) 0.0143(5) Uani 1 d . . . C6 C 1.0570(6) 0.0402(5) 0.0399(3) 0.0160(5) Uani 1 d . . . F1 F 1.0801(6) 0.3903(5) 0.1231(2) 0.0317(6) Uani 1 d . . . F2 F 1.1293(5) 0.1094(4) 0.2421(2) 0.0313(6) Uani 1 d . . . F3 F 0.6754(5) 0.3223(4) 0.03847(18) 0.0255(5) Uani 1 d . . . F4 F 0.7134(5) 0.0442(4) 0.1594(2) 0.0264(5) Uani 1 d . . . F5 F 1.2056(5) 0.1550(5) -0.0100(2) 0.0319(6) Uani 1 d . . . F6 F 1.2124(6) -0.1229(4) 0.1061(2) 0.0343(7) Uani 1 d . . . N N 0.1929(7) 0.6254(5) 0.3941(3) 0.0237(6) Uani 1 d . . . C1 C -0.0281(7) 0.7098(6) 0.4031(3) 0.0187(6) Uani 1 d . . . C2 C -0.3078(7) 0.8160(6) 0.4158(3) 0.0182(6) Uani 1 d . . . C3 C -0.3543(7) 0.9433(5) 0.4960(3) 0.0167(5) Uani 1 d . . . H2A H -0.403(13) 0.726(11) 0.434(5) 0.039(17) Uiso 1 d . . . H2B H -0.380(10) 0.907(7) 0.352(4) 0.011(10) Uiso 1 d . . . H3A H -0.283(11) 0.857(8) 0.560(4) 0.019(12) Uiso 1 d . . . H3B H -0.263(11) 1.031(9) 0.481(4) 0.025(14) Uiso 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I 0.01497(10) 0.01846(10) 0.01825(10) -0.01024(7) 0.00346(6) -0.00315(7) C4 0.0118(12) 0.0206(14) 0.0214(14) -0.0115(12) 0.0011(10) -0.0029(11) C5 0.0129(12) 0.0161(12) 0.0130(12) -0.0031(10) 0.0004(9) -0.0033(10) C6 0.0120(12) 0.0180(13) 0.0167(13) -0.0071(11) -0.0008(10) -0.0004(10) F1 0.0350(14) 0.0404(14) 0.0353(14) -0.0231(12) 0.0188(11) -0.0267(12) F2 0.0238(11) 0.0374(14) 0.0272(12) -0.0183(11) -0.0120(9) 0.0093(10) F3 0.0218(10) 0.0240(10) 0.0213(10) -0.0095(9) -0.0067(8) 0.0111(8) F4 0.0325(13) 0.0303(12) 0.0257(11) -0.0150(10) 0.0156(9) -0.0196(10) F5 0.0269(12) 0.0452(15) 0.0380(14) -0.0275(12) 0.0195(10) -0.0219(12) F6 0.0356(14) 0.0293(12) 0.0258(12) -0.0146(10) -0.0165(10) 0.0172(11) N 0.0175(13) 0.0259(15) 0.0302(16) -0.0153(13) 0.0070(11) -0.0049(11) C1 0.0189(14) 0.0205(14) 0.0202(14) -0.0103(12) 0.0046(11) -0.0077(12) C2 0.0151(13) 0.0226(15) 0.0185(14) -0.0094(12) 0.0018(11) -0.0047(11) C3 0.0145(12) 0.0197(14) 0.0174(13) -0.0088(11) 0.0020(10) -0.0041(11) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I C4 2.140(3) . NO C4 F1 1.334(4) . NO C4 F2 1.348(4) . NO C4 C5 1.553(5) . NO C5 F3 1.337(4) . NO C5 F4 1.343(4) . NO C5 C6 1.553(5) . NO C6 F5 1.336(4) . NO C6 F6 1.343(4) . NO C6 C6 1.559(7) 2_755 NO N C1 1.153(5) . NO C1 C2 1.461(5) . NO C2 C3 1.523(5) . NO C2 H2A 0.91(7) . NO C2 H2B 0.96(5) . NO C3 C3 1.516(7) 2_476 NO C3 H3A 0.95(5) . NO C3 H3B 0.88(6) . NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F1 C4 F2 108.2(3) . . NO F1 C4 C5 109.1(3) . . NO F2 C4 C5 108.5(3) . . NO F1 C4 I 110.3(2) . . NO F2 C4 I 109.4(2) . . NO C5 C4 I 111.3(2) . . NO F3 C5 F4 108.9(3) . . NO F3 C5 C6 108.8(3) . . NO F4 C5 C6 107.9(3) . . NO F3 C5 C4 107.7(3) . . NO F4 C5 C4 108.0(3) . . NO C6 C5 C4 115.5(3) . . NO F5 C6 F6 108.5(3) . . NO F5 C6 C5 109.0(3) . . NO F6 C6 C5 107.8(3) . . NO F5 C6 C6 108.5(3) . 2_755 NO F6 C6 C6 108.2(3) . 2_755 NO C5 C6 C6 114.7(3) . 2_755 NO N C1 C2 179.4(4) . . NO C1 C2 C3 112.9(3) . . NO C1 C2 H2A 111(4) . . NO C3 C2 H2A 108(4) . . NO C1 C2 H2B 110(3) . . NO C3 C2 H2B 108(3) . . NO H2A C2 H2B 107(5) . . NO C3 C3 C2 111.2(3) 2_476 . NO C3 C3 H3A 112(3) 2_476 . NO C2 C3 H3A 110(3) . . NO C3 C3 H3B 110(4) 2_476 . NO C2 C3 H3B 110(4) . . NO H3A C3 H3B 104(5) . . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag F1 C4 C5 F3 -61.1(3) . . . . NO F2 C4 C5 F3 -178.7(3) . . . . NO I C4 C5 F3 60.8(3) . . . . NO F1 C4 C5 F4 -178.6(3) . . . . NO F2 C4 C5 F4 63.9(3) . . . . NO I C4 C5 F4 -56.6(3) . . . . NO F1 C4 C5 C6 60.7(4) . . . . NO F2 C4 C5 C6 -56.9(4) . . . . NO I C4 C5 C6 -177.4(2) . . . . NO F3 C5 C6 F5 67.2(4) . . . . NO F4 C5 C6 F5 -174.8(3) . . . . NO C4 C5 C6 F5 -54.0(4) . . . . NO F3 C5 C6 F6 -175.2(3) . . . . NO F4 C5 C6 F6 -57.2(4) . . . . NO C4 C5 C6 F6 63.6(4) . . . . NO F3 C5 C6 C6 -54.6(5) . . . 2_755 NO F4 C5 C6 C6 63.3(4) . . . 2_755 NO C4 C5 C6 C6 -175.8(3) . . . 2_755 NO C1 C2 C3 C3 178.0(4) . . . 2_476 NO _diffrn_measured_fraction_theta_max 0.927 _diffrn_reflns_theta_full 35.93 _diffrn_measured_fraction_theta_full 0.927 _refine_diff_density_max 2.708 _refine_diff_density_min -2.316 _refine_diff_density_rms 0.246 #===END data_re107lt _database_code_depnum_ccdc_archive 'CCDC 230376' _audit_creation_method SHELXL-97 _audit_update_record ; July 4th, 2003 Checkcif ; _chemical_name_systematic ; 1,6-dicianohexane 1,4-diiodooctafluorobutane ; _chemical_formula_moiety 'C8 H12 N2, C4 F8 I2' _chemical_formula_sum 'C12 H12 F8 I2 N2' _chemical_formula_weight 590.04 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P2(1)/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 7.8842(8) _cell_length_b 6.3141(6) _cell_length_c 17.377(2) _cell_angle_alpha 90.00 _cell_angle_beta 92.886(8) _cell_angle_gamma 90.00 _cell_volume 863.96(16) _cell_formula_units_Z 2 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 7398 _cell_measurement_theta_min 2.347 _cell_measurement_theta_max 35.804 _exptl_crystal_description tablet _exptl_crystal_colour colourless _exptl_crystal_size_max 0.16 _exptl_crystal_size_mid 0.11 _exptl_crystal_size_min 0.04 _exptl_crystal_density_diffrn 2.268 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 552 _exptl_absorpt_coefficient_mu 3.717 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.824330 _exptl_absorpt_correction_T_max 1.000000 _exptl_special_details ; The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 17631 _diffrn_reflns_av_R_equivalents 0.0359 _diffrn_reflns_av_sigmaI/netI 0.0353 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -28 _diffrn_reflns_limit_l_max 28 _diffrn_reflns_theta_min 2.35 _diffrn_reflns_theta_max 36.41 _reflns_number_total 4048 _reflns_number_gt 3553 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0311P)^2^+0.6696P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 4048 _refine_ls_number_parameters 133 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0419 _refine_ls_R_factor_gt 0.0344 _refine_ls_wR_factor_ref 0.0728 _refine_ls_wR_factor_gt 0.0702 _refine_ls_goodness_of_fit_ref 1.091 _refine_ls_restrained_S_all 1.091 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I I 0.718388(18) -0.10288(2) 0.167511(8) 0.01356(5) Uani 1 d . . . F1 F 1.07736(19) -0.1071(2) 0.14023(9) 0.0192(3) Uani 1 d . . . F2 F 0.9368(2) -0.3420(2) 0.07139(8) 0.0171(3) Uani 1 d . . . F3 F 0.93133(19) 0.2115(2) 0.05626(8) 0.0171(3) Uani 1 d . . . F4 F 0.77812(17) -0.0160(2) -0.01210(8) 0.0160(3) Uani 1 d . . . C5 C 0.9323(3) -0.1406(3) 0.09757(13) 0.0123(4) Uani 1 d . . . C6 C 0.9271(3) 0.0128(3) 0.02827(12) 0.0113(4) Uani 1 d . . . N N 0.4154(3) -0.0938(4) 0.26197(13) 0.0215(4) Uani 1 d . . . C1 C 0.2969(3) -0.1174(4) 0.29644(14) 0.0165(4) Uani 1 d . . . C2 C 0.1469(3) -0.1487(4) 0.34143(14) 0.0168(4) Uani 1 d . . . H2A H 0.049(5) -0.120(5) 0.308(2) 0.027(10) Uiso 1 d . . . H2B H 0.142(4) -0.298(6) 0.356(2) 0.024(8) Uiso 1 d . . . C3 C 0.1487(3) -0.0122(4) 0.41410(13) 0.0140(4) Uani 1 d . . . H3A H 0.138(4) 0.131(5) 0.3993(19) 0.014(8) Uiso 1 d . . . H3B H 0.252(4) -0.027(5) 0.4450(18) 0.014(7) Uiso 1 d . . . C4 C 0.0007(3) -0.0675(4) 0.46388(13) 0.0138(4) Uani 1 d . . . H4A H 0.007(4) -0.212(6) 0.4749(19) 0.026(9) Uiso 1 d . . . H4B H -0.103(4) -0.051(5) 0.4335(18) 0.014(7) Uiso 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I 0.01394(7) 0.01529(7) 0.01189(7) 0.00038(5) 0.00514(5) 0.00060(5) F1 0.0129(7) 0.0298(8) 0.0146(6) 0.0030(6) -0.0010(5) -0.0012(6) F2 0.0232(7) 0.0108(5) 0.0178(7) 0.0001(5) 0.0077(6) 0.0033(5) F3 0.0248(7) 0.0096(6) 0.0176(7) -0.0020(5) 0.0083(6) 0.0004(5) F4 0.0108(6) 0.0226(7) 0.0146(6) 0.0026(5) 0.0008(5) 0.0003(5) C5 0.0120(9) 0.0136(9) 0.0114(9) 0.0000(7) 0.0029(7) 0.0004(7) C6 0.0116(9) 0.0113(8) 0.0113(8) -0.0007(7) 0.0024(7) 0.0009(7) N 0.0201(10) 0.0283(11) 0.0167(9) 0.0012(8) 0.0073(8) 0.0028(8) C1 0.0179(11) 0.0200(10) 0.0118(9) -0.0007(8) 0.0028(8) 0.0015(8) C2 0.0143(10) 0.0236(11) 0.0128(9) -0.0029(8) 0.0043(8) -0.0019(9) C3 0.0125(9) 0.0163(9) 0.0134(9) -0.0008(8) 0.0037(7) -0.0017(8) C4 0.0138(10) 0.0152(9) 0.0127(9) -0.0006(7) 0.0047(7) 0.0002(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I C5 2.141(2) . NO F1 C5 1.348(3) . NO F2 C5 1.351(3) . NO F3 C6 1.346(3) . NO F4 C6 1.350(3) . NO C5 C6 1.544(3) . NO C6 C6 1.557(4) 3_755 NO N C1 1.144(3) . NO C1 C2 1.464(3) . NO C2 C3 1.529(3) . NO C2 H2A 0.96(4) . NO C2 H2B 0.98(4) . NO C3 C4 1.528(3) . NO C3 H3A 0.94(3) . NO C3 H3B 0.96(3) . NO C4 C4 1.518(5) 3_556 NO C4 H4A 0.93(3) . NO C4 H4B 0.95(3) . NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F1 C5 F2 107.29(18) . . NO F1 C5 C6 108.60(18) . . NO F2 C5 C6 109.13(17) . . NO F1 C5 I 109.94(15) . . NO F2 C5 I 109.29(14) . . NO C6 C5 I 112.46(14) . . NO F3 C6 F4 108.55(17) . . NO F3 C6 C5 107.69(17) . . NO F4 C6 C5 108.01(17) . . NO F3 C6 C6 108.6(2) . 3_755 NO F4 C6 C6 108.0(2) . 3_755 NO C5 C6 C6 115.8(2) . 3_755 NO N C1 C2 179.2(3) . . NO C1 C2 C3 113.0(2) . . NO C1 C2 H2A 107(2) . . NO C3 C2 H2A 112(2) . . NO C1 C2 H2B 108(2) . . NO C3 C2 H2B 109(2) . . NO H2A C2 H2B 107(3) . . NO C4 C3 C2 111.28(19) . . NO C4 C3 H3A 108(2) . . NO C2 C3 H3A 109(2) . . NO C4 C3 H3B 108.3(18) . . NO C2 C3 H3B 112.3(19) . . NO H3A C3 H3B 108(3) . . NO C4 C4 C3 112.2(2) 3_556 . NO C4 C4 H4A 112(2) 3_556 . NO C3 C4 H4A 108(2) . . NO C4 C4 H4B 110.9(19) 3_556 . NO C3 C4 H4B 108.5(19) . . NO H4A C4 H4B 105(3) . . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag F1 C5 C6 F3 -60.3(2) . . . . NO F2 C5 C6 F3 -176.99(17) . . . . NO I C5 C6 F3 61.57(19) . . . . NO F1 C5 C6 F4 -177.39(17) . . . . NO F2 C5 C6 F4 66.0(2) . . . . NO I C5 C6 F4 -55.49(19) . . . . NO F1 C5 C6 C6 61.4(3) . . . 3_755 NO F2 C5 C6 C6 -55.2(3) . . . 3_755 NO I C5 C6 C6 -176.7(2) . . . 3_755 NO C1 C2 C3 C4 -173.6(2) . . . . NO C2 C3 C4 C4 -179.6(3) . . . 3_556 NO _diffrn_measured_fraction_theta_max 0.896 _diffrn_reflns_theta_full 36.41 _diffrn_measured_fraction_theta_full 0.896 _refine_diff_density_max 1.800 _refine_diff_density_min -1.876 _refine_diff_density_rms 0.178 #===END data_re108lt _database_code_depnum_ccdc_archive 'CCDC 230377' _audit_creation_method SHELXL-97 _audit_update_record ; July 7th, 2003 Checkcif ; _chemical_name_systematic ; 1,6-dicianohexane 1,6-diiodododecafluorohexane ; _chemical_formula_moiety 'C8 H12 N2, C6 F12 I2' _chemical_formula_sum 'C14 H12 F12 I2 N2' _chemical_formula_weight 690.06 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 5.2409(6) _cell_length_b 9.7393(9) _cell_length_c 10.3874(10) _cell_angle_alpha 79.665(10) _cell_angle_beta 76.972(11) _cell_angle_gamma 84.691(10) _cell_volume 507.42(9) _cell_formula_units_Z 1 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 5144 _cell_measurement_theta_min 2.697 _cell_measurement_theta_max 36.147 _exptl_crystal_description rhombohedron _exptl_crystal_colour colourless _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.16 _exptl_crystal_size_min 0.13 _exptl_crystal_density_diffrn 2.258 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 324 _exptl_absorpt_coefficient_mu 3.209 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS,(Bruker, 1997)' _exptl_absorpt_correction_T_min 0.501412 _exptl_absorpt_correction_T_max 0.606531 _exptl_special_details ; The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 0.5 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 4644 _diffrn_reflns_av_R_equivalents 0.0000 _diffrn_reflns_av_sigmaI/netI 0.0230 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 2.70 _diffrn_reflns_theta_max 36.24 _reflns_number_total 4644 _reflns_number_gt 4351 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0283P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 4644 _refine_ls_number_parameters 160 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0214 _refine_ls_R_factor_gt 0.0195 _refine_ls_wR_factor_ref 0.0489 _refine_ls_wR_factor_gt 0.0485 _refine_ls_goodness_of_fit_ref 1.051 _refine_ls_restrained_S_all 1.051 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N N 0.3521(3) 0.14880(15) 0.40413(14) 0.0259(3) Uani 1 d . . . C1 C 0.1985(3) 0.12174(16) 0.35181(14) 0.0215(3) Uani 1 d . . . C2 C 0.0071(3) 0.08623(19) 0.28083(15) 0.0236(3) Uani 1 d . . . H2A H -0.099(5) 0.175(3) 0.265(3) 0.051(7) Uiso 1 d . . . H2B H -0.093(4) 0.014(2) 0.335(2) 0.037(6) Uiso 1 d . . . C3 C 0.1376(3) 0.04880(14) 0.14366(13) 0.0171(2) Uani 1 d . . . H3A H 0.235(3) 0.1222(17) 0.0919(17) 0.010(4) Uiso 1 d . . . H3B H 0.250(4) -0.031(2) 0.160(2) 0.021(4) Uiso 1 d . . . C4 C -0.0632(3) 0.01852(15) 0.06867(13) 0.0178(2) Uani 1 d . . . H4A H -0.184(4) 0.101(2) 0.0547(19) 0.018(4) Uiso 1 d . . . H4B H -0.168(4) -0.060(2) 0.123(2) 0.030(5) Uiso 1 d . . . I I 0.587613(15) 0.285193(8) 0.579769(7) 0.01570(3) Uani 1 d . . . C5 C 0.7376(3) 0.38555(14) 0.71306(13) 0.0154(2) Uani 1 d . . . C6 C 0.5194(2) 0.42026(13) 0.83139(12) 0.0137(2) Uani 1 d . . . C7 C 0.6117(2) 0.48065(13) 0.94164(12) 0.0140(2) Uani 1 d . . . F1 F 0.85127(18) 0.50344(9) 0.64775(9) 0.02476(18) Uani 1 d . . . F2 F 0.92296(17) 0.29958(10) 0.76266(9) 0.02397(18) Uani 1 d . . . F3 F 0.34434(17) 0.51223(10) 0.78239(8) 0.02268(17) Uani 1 d . . . F4 F 0.39895(18) 0.30204(9) 0.89129(8) 0.02314(18) Uani 1 d . . . F5 F 0.74129(19) 0.59626(10) 0.88277(9) 0.0265(2) Uani 1 d . . . F6 F 0.77940(19) 0.38589(10) 0.99355(9) 0.02663(19) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N 0.0284(6) 0.0304(7) 0.0231(6) -0.0121(5) -0.0086(5) -0.0004(5) C1 0.0241(6) 0.0243(6) 0.0177(6) -0.0076(5) -0.0044(5) -0.0007(5) C2 0.0196(6) 0.0370(8) 0.0176(6) -0.0100(6) -0.0056(5) -0.0049(6) C3 0.0205(6) 0.0189(6) 0.0142(5) -0.0038(4) -0.0060(4) -0.0048(4) C4 0.0212(6) 0.0189(6) 0.0156(5) -0.0042(4) -0.0068(4) -0.0032(4) I 0.01785(4) 0.01829(4) 0.01290(4) -0.00666(3) -0.00388(3) -0.00141(3) C5 0.0163(5) 0.0173(5) 0.0139(5) -0.0054(4) -0.0029(4) -0.0025(4) C6 0.0145(5) 0.0149(5) 0.0127(5) -0.0026(4) -0.0039(4) -0.0026(4) C7 0.0143(5) 0.0158(5) 0.0133(5) -0.0040(4) -0.0043(4) -0.0024(4) F1 0.0307(5) 0.0254(4) 0.0177(4) -0.0064(3) 0.0039(3) -0.0156(4) F2 0.0193(4) 0.0317(5) 0.0257(4) -0.0140(4) -0.0108(3) 0.0069(3) F3 0.0218(4) 0.0310(5) 0.0185(4) -0.0101(3) -0.0105(3) 0.0091(3) F4 0.0316(5) 0.0227(4) 0.0162(4) -0.0059(3) 0.0005(3) -0.0159(3) F5 0.0319(5) 0.0283(5) 0.0202(4) -0.0099(3) 0.0042(3) -0.0190(4) F6 0.0272(4) 0.0358(5) 0.0220(4) -0.0150(4) -0.0146(3) 0.0150(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N C1 1.1403(19) . NO C1 C2 1.469(2) . NO C2 C3 1.527(2) . NO C2 H2A 0.99(3) . NO C2 H2B 0.94(2) . NO C3 C4 1.5201(18) . NO C3 H3A 0.930(16) . NO C3 H3B 0.94(2) . NO C4 C4 1.523(3) 2 NO C4 H4A 0.987(19) . NO C4 H4B 0.99(2) . NO I C5 2.1467(13) . NO C5 F1 1.3410(15) . NO C5 F2 1.3531(16) . NO C5 C6 1.5415(18) . NO C6 F3 1.3411(15) . NO C6 F4 1.3461(14) . NO C6 C7 1.5606(17) . NO C7 F6 1.3416(15) . NO C7 F5 1.3453(15) . NO C7 C7 1.557(3) 2_667 NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N C1 C2 178.24(16) . . NO C1 C2 C3 112.21(12) . . NO C1 C2 H2A 103.6(15) . . NO C3 C2 H2A 107.2(15) . . NO C1 C2 H2B 109.2(14) . . NO C3 C2 H2B 111.9(14) . . NO H2A C2 H2B 112.5(19) . . NO C4 C3 C2 111.73(11) . . NO C4 C3 H3A 108.4(11) . . NO C2 C3 H3A 110.0(10) . . NO C4 C3 H3B 110.6(12) . . NO C2 C3 H3B 106.3(12) . . NO H3A C3 H3B 109.8(15) . . NO C3 C4 C4 112.49(14) . 2 NO C3 C4 H4A 110.4(11) . . NO C4 C4 H4A 107.3(11) 2 . NO C3 C4 H4B 109.0(13) . . NO C4 C4 H4B 109.3(12) 2 . NO H4A C4 H4B 108.2(17) . . NO F1 C5 F2 107.52(11) . . NO F1 C5 C6 109.14(10) . . NO F2 C5 C6 108.40(10) . . NO F1 C5 I 110.77(8) . . NO F2 C5 I 109.35(8) . . NO C6 C5 I 111.55(8) . . NO F3 C6 F4 108.55(10) . . NO F3 C6 C5 108.22(10) . . NO F4 C6 C5 108.20(10) . . NO F3 C6 C7 108.72(10) . . NO F4 C6 C7 107.23(10) . . NO C5 C6 C7 115.73(10) . . NO F6 C7 F5 108.31(11) . . NO F6 C7 C7 108.39(12) . 2_667 NO F5 C7 C7 108.36(13) . 2_667 NO F6 C7 C6 108.35(10) . . NO F5 C7 C6 108.13(10) . . NO C7 C7 C6 115.12(12) 2_667 . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N C1 C2 C3 2(5) . . . . NO C1 C2 C3 C4 -177.49(13) . . . . NO C2 C3 C4 C4 179.78(15) . . . 2 NO F1 C5 C6 F3 59.40(13) . . . . NO F2 C5 C6 F3 176.23(10) . . . . NO I C5 C6 F3 -63.32(11) . . . . NO F1 C5 C6 F4 176.84(10) . . . . NO F2 C5 C6 F4 -66.33(12) . . . . NO I C5 C6 F4 54.12(11) . . . . NO F1 C5 C6 C7 -62.86(14) . . . . NO F2 C5 C6 C7 53.98(14) . . . . NO I C5 C6 C7 174.42(8) . . . . NO F3 C6 C7 F6 177.76(10) . . . . NO F4 C6 C7 F6 60.59(13) . . . . NO C5 C6 C7 F6 -60.24(14) . . . . NO F3 C6 C7 F5 -65.05(13) . . . . NO F4 C6 C7 F5 177.77(10) . . . . NO C5 C6 C7 F5 56.94(14) . . . . NO F3 C6 C7 C7 56.26(16) . . . 2_667 NO F4 C6 C7 C7 -60.92(16) . . . 2_667 NO C5 C6 C7 C7 178.25(13) . . . 2_667 NO _diffrn_measured_fraction_theta_max 0.948 _diffrn_reflns_theta_full 36.24 _diffrn_measured_fraction_theta_full 0.948 _refine_diff_density_max 1.244 _refine_diff_density_min -1.152 _refine_diff_density_rms 0.111 #===END data_re109 _database_code_depnum_ccdc_archive 'CCDC 230378' _audit_creation_method SHELXL-97 _audit_update_record ; August 14th, 2003 Checkcif ; _chemical_name_systematic ; 1,6-dicianohexane 1,8-diiodohexadecafluorohexane ; _chemical_formula_moiety 'C8 F16 I2, C8 H12 N2' _chemical_formula_sum 'C16 H12 F16 I2 N2' _chemical_formula_weight 790.08 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 5.4008(16) _cell_length_b 7.214(2) _cell_length_c 16.065(4) _cell_angle_alpha 88.713(8) _cell_angle_beta 87.854(8) _cell_angle_gamma 72.453(10) _cell_volume 596.3(3) _cell_formula_units_Z 1 _cell_measurement_temperature 200(2) _cell_measurement_reflns_used 3186 _cell_measurement_theta_min 2.538 _cell_measurement_theta_max 23.673 _exptl_crystal_description tablet _exptl_crystal_colour colourless _exptl_crystal_size_max 0.22 _exptl_crystal_size_mid 0.13 _exptl_crystal_size_min 0.04 _exptl_crystal_density_diffrn 2.200 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 372 _exptl_absorpt_coefficient_mu 2.769 _exptl_absorpt_correction_type none _exptl_special_details ; Crystals of this material sublimate at room temperature quite quickly. They are also immediately solvated by any kind of glue. The only glue we could use was a very high density perfluorated polyether. The data collection was carried out at 200 K. Any attempts to collect data at lower temperature failed because, as the glue solidified, always the crystal dramatically cracked. The crystal temperature was controlled by the Bruker KRIOFLEX low temperature device. During the data collection the temperature deviation from the fixed value was less than 1 K, but we evaluate that the real error on the crystal temperature was probably around 2 K. ; _diffrn_ambient_temperature 200(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD area detector' _diffrn_measurement_method '\w and \f scans' _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 10182 _diffrn_reflns_av_R_equivalents 0.0425 _diffrn_reflns_av_sigmaI/netI 0.0507 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -20 _diffrn_reflns_limit_l_max 20 _diffrn_reflns_theta_min 2.54 _diffrn_reflns_theta_max 27.61 _reflns_number_total 2756 _reflns_number_gt 2116 _reflns_threshold_expression >2\s(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SIR-92, (Altomare et al., 1994)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEPIII (Burnett & Johnson,1996)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0387P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_number_reflns 2756 _refine_ls_number_parameters 187 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0431 _refine_ls_R_factor_gt 0.0338 _refine_ls_wR_factor_ref 0.0712 _refine_ls_wR_factor_gt 0.0699 _refine_ls_goodness_of_fit_ref 0.876 _refine_ls_restrained_S_all 0.876 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I I 0.60260(5) 0.82883(4) 0.272091(17) 0.04415(11) Uani 1 d . . . C5 C 0.7548(9) 1.0200(6) 0.1973(3) 0.0483(11) Uani 1 d . . . F1 F 0.9539(6) 0.9205(5) 0.1520(2) 0.1085(14) Uani 1 d . . . F2 F 0.8391(8) 1.1304(5) 0.2472(2) 0.1104(15) Uani 1 d . . . C6 C 0.5531(7) 1.1547(5) 0.1409(2) 0.0361(9) Uani 1 d . . . F3 F 0.3639(5) 1.2651(4) 0.18829(18) 0.0760(9) Uani 1 d . . . F4 F 0.4528(6) 1.0459(4) 0.09632(17) 0.0766(9) Uani 1 d . . . C7 C 0.6565(7) 1.2872(5) 0.0815(2) 0.0355(9) Uani 1 d . . . F5 F 0.8201(5) 1.1738(4) 0.02660(17) 0.0736(9) Uani 1 d . . . F6 F 0.7883(6) 1.3781(4) 0.12453(18) 0.0749(9) Uani 1 d . . . C8 C 0.4480(7) 1.4418(6) 0.0333(2) 0.0380(9) Uani 1 d . . . F7 F 0.3038(6) 1.5649(4) 0.08834(17) 0.0809(10) Uani 1 d . . . F8 F 0.2961(6) 1.3554(4) -0.00275(18) 0.0756(9) Uani 1 d . . . N N 0.4043(8) 0.5577(6) 0.3835(3) 0.0657(11) Uani 1 d . . . C1 C 0.2695(8) 0.4646(6) 0.3859(3) 0.0467(10) Uani 1 d . . . C2 C 0.0969(10) 0.3431(7) 0.3895(3) 0.0460(11) Uani 1 d . . . C3 C 0.1605(8) 0.1933(6) 0.4592(3) 0.0396(9) Uani 1 d . . . C4 C -0.0254(9) 0.0732(7) 0.4642(3) 0.0426(10) Uani 1 d . . . H2A H 0.111(8) 0.289(6) 0.344(3) 0.044(14) Uiso 1 d . . . H2B H -0.080(10) 0.421(6) 0.401(3) 0.056(13) Uiso 1 d . . . H3A H 0.153(8) 0.257(6) 0.513(3) 0.045(12) Uiso 1 d . . . H3B H 0.327(8) 0.112(5) 0.448(2) 0.032(10) Uiso 1 d . . . H4A H -0.021(7) 0.004(5) 0.416(2) 0.032(10) Uiso 1 d . . . H4B H -0.193(9) 0.148(6) 0.470(3) 0.051(13) Uiso 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I 0.04605(17) 0.04049(17) 0.04850(18) 0.01600(12) -0.00910(12) -0.01717(12) C5 0.047(3) 0.050(3) 0.049(3) 0.018(2) -0.009(2) -0.016(2) F1 0.0546(18) 0.102(2) 0.129(3) 0.076(2) 0.0343(19) 0.0276(17) F2 0.160(3) 0.127(3) 0.095(2) 0.071(2) -0.087(2) -0.114(3) C6 0.036(2) 0.035(2) 0.037(2) 0.0010(17) -0.0022(17) -0.0103(18) F3 0.0689(18) 0.0603(17) 0.0747(19) 0.0273(15) 0.0329(15) 0.0107(14) F4 0.119(3) 0.0720(18) 0.0659(18) 0.0298(15) -0.0454(17) -0.0669(19) C7 0.032(2) 0.033(2) 0.042(2) 0.0052(17) -0.0031(17) -0.0108(17) F5 0.0634(17) 0.0596(17) 0.0682(18) 0.0263(14) 0.0306(14) 0.0201(14) F6 0.088(2) 0.0777(19) 0.083(2) 0.0430(16) -0.0501(16) -0.0591(17) C8 0.036(2) 0.035(2) 0.041(2) 0.0042(18) -0.0006(18) -0.0074(17) F7 0.090(2) 0.0563(17) 0.0628(18) 0.0217(14) 0.0370(16) 0.0218(15) F8 0.0711(18) 0.0801(19) 0.095(2) 0.0476(17) -0.0465(16) -0.0502(16) N 0.059(3) 0.059(3) 0.085(3) 0.025(2) -0.005(2) -0.028(2) C1 0.047(3) 0.041(2) 0.052(3) 0.013(2) 0.002(2) -0.013(2) C2 0.048(3) 0.044(3) 0.049(3) 0.014(2) -0.005(2) -0.020(2) C3 0.036(2) 0.040(2) 0.045(3) 0.009(2) -0.0016(19) -0.014(2) C4 0.044(3) 0.045(3) 0.044(3) 0.008(2) -0.006(2) -0.021(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I C5 2.134(4) . NO C5 F1 1.304(5) . NO C5 F2 1.326(5) . NO C5 C6 1.533(6) . NO C6 F4 1.317(4) . NO C6 F3 1.318(4) . NO C6 C7 1.542(5) . NO C7 F6 1.325(4) . NO C7 F5 1.328(5) . NO C7 C8 1.543(5) . NO C8 F7 1.321(5) . NO C8 F8 1.326(5) . NO C8 C8 1.537(7) 2_685 NO N C1 1.128(5) . NO C1 C2 1.459(6) . NO C2 C3 1.513(6) . NO C2 H2A 0.83(4) . NO C2 H2B 0.96(5) . NO C3 C4 1.510(6) . NO C3 H3A 0.98(4) . NO C3 H3B 0.93(4) . NO C4 C4 1.520(8) 2_556 NO C4 H4A 0.92(4) . NO C4 H4B 0.91(5) . NO loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F1 C5 F2 107.2(4) . . NO F1 C5 C6 109.5(4) . . NO F2 C5 C6 107.8(3) . . NO F1 C5 I 110.3(3) . . NO F2 C5 I 108.6(3) . . NO C6 C5 I 113.2(3) . . NO F4 C6 F3 107.4(3) . . NO F4 C6 C5 108.0(3) . . NO F3 C6 C5 108.5(3) . . NO F4 C6 C7 108.7(3) . . NO F3 C6 C7 108.5(3) . . NO C5 C6 C7 115.5(3) . . NO F6 C7 F5 108.0(3) . . NO F6 C7 C6 109.1(3) . . NO F5 C7 C6 107.6(3) . . NO F6 C7 C8 108.0(3) . . NO F5 C7 C8 108.4(3) . . NO C6 C7 C8 115.5(3) . . NO F7 C8 F8 107.8(3) . . NO F7 C8 C8 108.4(4) . 2_685 NO F8 C8 C8 108.7(4) . 2_685 NO F7 C8 C7 107.5(3) . . NO F8 C8 C7 108.7(3) . . NO C8 C8 C7 115.6(4) 2_685 . NO N C1 C2 179.5(4) . . NO C1 C2 C3 112.5(4) . . NO C1 C2 H2A 107(3) . . NO C3 C2 H2A 111(3) . . NO C1 C2 H2B 110(3) . . NO C3 C2 H2B 106(3) . . NO H2A C2 H2B 110(4) . . NO C4 C3 C2 111.9(4) . . NO C4 C3 H3A 108(2) . . NO C2 C3 H3A 111(2) . . NO C4 C3 H3B 109(2) . . NO C2 C3 H3B 107(2) . . NO H3A C3 H3B 110(3) . . NO C3 C4 C4 113.4(5) . 2_556 NO C3 C4 H4A 113(2) . . NO C4 C4 H4A 107(2) 2_556 . NO C3 C4 H4B 112(3) . . NO C4 C4 H4B 107(3) 2_556 . NO H4A C4 H4B 104(4) . . NO loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag F1 C5 C6 F4 69.0(5) . . . . NO F2 C5 C6 F4 -174.7(4) . . . . NO I C5 C6 F4 -54.4(4) . . . . NO F1 C5 C6 F3 -174.9(4) . . . . NO F2 C5 C6 F3 -58.6(4) . . . . NO I C5 C6 F3 61.7(4) . . . . NO F1 C5 C6 C7 -52.9(5) . . . . NO F2 C5 C6 C7 63.4(5) . . . . NO I C5 C6 C7 -176.3(3) . . . . NO F4 C6 C7 F6 -171.7(3) . . . . NO F3 C6 C7 F6 71.8(4) . . . . NO C5 C6 C7 F6 -50.2(4) . . . . NO F4 C6 C7 F5 -54.8(4) . . . . NO F3 C6 C7 F5 -171.3(3) . . . . NO C5 C6 C7 F5 66.7(4) . . . . NO F4 C6 C7 C8 66.4(4) . . . . NO F3 C6 C7 C8 -50.1(4) . . . . NO C5 C6 C7 C8 -172.1(3) . . . . NO F6 C7 C8 F7 -56.8(4) . . . . NO F5 C7 C8 F7 -173.6(3) . . . . NO C6 C7 C8 F7 65.7(4) . . . . NO F6 C7 C8 F8 -173.2(3) . . . . NO F5 C7 C8 F8 70.0(4) . . . . NO C6 C7 C8 F8 -50.7(4) . . . . NO F6 C7 C8 C8 64.3(5) . . . 2_685 NO F5 C7 C8 C8 -52.5(5) . . . 2_685 NO C6 C7 C8 C8 -173.2(4) . . . 2_685 NO C1 C2 C3 C4 178.0(4) . . . . NO C2 C3 C4 C4 -177.5(5) . . . 2_556 NO _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 27.61 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.930 _refine_diff_density_min -0.424 _refine_diff_density_rms 0.106