Supporting Information for:
Biosynthetic studies on the azinomycins: The pathway to the naphthoate fragment
Christophe Corre#, Cyrille A.S. Landreau#, Michael Shipman#, Philip A.S. Lowden‡

School of Biological and Chemical Sciences
University of Exeter
Stocker Road
Exeter
EX4 4QD
U.K.

‡ Current Address:
School of Biological and Chemical Sciences
Birkbeck College, University of London
Malet Street
London
WC1E 7HX
U.K.
Tel. +44 (0)20 70790789
Fax. +44 (0)20 76316246
email: p.lowden@bbk.ac.uk

#Current Address
Department of Chemistry
University of Warwick
Gibbet Hill Road
Coventry
CV4 7AL
U.K.
Tel +44 (0)24 76523186
Fax +44 (0)24 76524429
Email m.shipman@warwick.ac.uk
Contents:
Experimental procedures for feeding studies
Spectroscopic data:
\(^1 \text{H} \) NMR assignments for azinomycin B.
ESMS of azinomycin B after feeding of 4a, 5a and 6a.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 4a.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 5a.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 6a.
\(^2 \text{H} \) NMR of the mixture of 4a and 6b used for competition feeding.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 4a and 6b.
\(^2 \text{H} \) NMR of the mixture of 5a and 6b used for competition feeding.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 5a and 6b.
ESMS of azinomycin B after feeding of 4b.
\(^2 \text{H} \) NMR of azinomycin B after feeding of 4b.
\(^1 \text{H} \) NMR of azinomycin B after feeding of 4b.
\(^1 \text{H} \) NMR spectrum of 6a.
\(^2 \text{H} \) NMR spectrum of 6a.
ESMS spectrum of 6a.
\(^1 \text{H} \) NMR spectrum of 5a.
\(^2 \text{H} \) NMR spectrum of 5a.
ESMS spectrum of 5a.
\(^1 \text{H} \) NMR spectrum of 4a.
\(^2 \text{H} \) NMR spectrum of 4a.
ESMS spectrum of 4a.
\(^1 \text{H} \) NMR spectrum of 6b.
\(^2 \text{H} \) NMR spectrum of 6b.
EIMS spectrum of 6b.
\(^1 \text{H} \) NMR spectrum of 4b.
\(^2 \text{H} \) NMR spectrum of 4b.
ESMS spectrum of 4b.
Experimental procedures for feeding studies: A 100 ml seed culture of *S. sahachiroi* (NRRL 2485), maintained on GYM agar plates (glucose monohydrate, 4 g/L; yeast extract, 4 g/L; malt extract, 10 g/L; CaCO₃, 2 g/L; agar, 12 g/L; tap water to balance; adjusted to pH 6.8 with NaOH, 1 M before sterilisation) at 28 °C, was grown in PS5 medium (Pharmamedia, 5 g/L; starch, 5 g/L; tap water to balance; adjusted to pH 6.0) at 30 °C, 200 rpm for 24 hours then 25 ml was used to inoculate 500 ml of PS5 medium, which was grown at 30 °C, 200 rpm for 72 hours.

Aqueous solutions of labeled precursors as their sodium salts were added through a 0.2 µm filter at concentrations as outlined in the text.

After centrifugation of the cultures, azinomycin B was isolated by extraction of the supernatant (pH 8.0) with an equal volume of chloroform at 4°C, concentration and then a series of precipitations.

For each 100 ml of culture, the residue was precipitated from 600 µl chloroform/hexane (1:29), centrifuged at 2000 rpm and the supernatant discarded. This was repeated and then the residue dissolved in 600 µl chloroform/hexane (2:1), centrifuged and the supernatant retained. This residue was then dissolved in 600 µl chloroform/diethyl ether (1:4), centrifuged and the supernatant concentrated to give pure azinomycin B (~1.5 mg per 100 ml).

¹H NMR spectra were obtained on a Bruker Advance 400 in CDCl₃, d₆-acetone or d₆-DMSO, referenced to solvent. ²H NMR spectra were obtained on a Bruker Advance 400 in CHCl₃, referenced to d₆-acetone. Electrospray ionisation mass spectrometry (ESI-MS) was performed on a MicroMass Platform LC. Samples were prepared in a solution generating positive ions (acetonitrile/H₂O 50:50 + 1% formic acid).

¹H NMR assignments for azinomycin B.

![Azinomycin B NMR](image)

δH (400 MHz; CDCl₃) 12.47 (1 H, br s, OH-4), 12.47 (1 H, s, H-5), 8.55 (1 H, dd, J 7.0, 3.6, H-8’), 8.20 (1 H, br s, H-16), 7.94 (1 H, d, J 2.9, H-2’), 7.48 (1H, d, J 2.5 Hz, H-4’), 7.32 (1 H, m, H-7’), 7.32 (1 H, m, H-6’), 5.50 (1 H, d, J 4.0, H-13), 5.12 (1 H, s, H-18), 4.64 (1 H, dd, J 4.8, 4.0, H-12), 3.96 (3 H, s, OCH₃-3’), 3.96 (1 H, OH-12), 3.36 (1 H, m, H-11), 2.98 (1 H, d, J 4.3, H-21b), 2.80 (1 H, d, J 4.3, H-21a), 2.70 (1 H, H-10b), 2.68 (3 H, s, CH₃-5’), 2.30 (1 H, H-10a), 2.30 (3 H, s, CH₃-1), 2.20 (3 H, s, CH₃-15), and 1.53 (3 H, s, CH₃-20).
ESMS of azinomycin B after feeding of $4a$, $5a$ and $6a$.
2H NMR of azinomycin B after feeding of 4a.
2H NMR of azinomycin B after feeding of 5a.
2H NMR of azinomycin B after feeding of 6a.
2H NMR of the mixture of 4a and 6b used for competition feeding.
2H NMR of azinomycin B after feeding of 4a and 6b.
2H NMR of the mixture of 5a and 6b used for competition feeding.
2H NMR of azinomycin B after feeding of 5a and 6b.
ESMS of azinomycin B after feeding of 4b.
2H NMR of azinomycin B after feeding of 4b.
1H NMR of azinomycin B after feeding of 4b.
1H NMR spectrum of 6a.
2H NMR spectrum of 6a.
ESMS spectrum of 6a.
1H NMR spectrum of 5a.
2H NMR spectrum of 5a.
ESMS spectrum of 5a.
H NMR spectrum of 4a.
2H NMR spectrum of 4a.
ESMS spectrum of 4a.
1H NMR spectrum of 6b.
2H NMR spectrum of 6b.
EIMS spectrum of 6b.

<table>
<thead>
<tr>
<th>University of Exeter</th>
<th>School of Chemistry</th>
<th>Mass Spectrometry Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted By</td>
<td>Landreau</td>
<td>CL237</td>
</tr>
<tr>
<td>Service Reference</td>
<td>GCT03-0597</td>
<td>Predicted Mol. Formula C13H9D3O3</td>
</tr>
<tr>
<td>Ionisation</td>
<td>EI</td>
<td>Calculated Exact Mass 219.0975</td>
</tr>
<tr>
<td>Inlet</td>
<td>Solids probe</td>
<td>M/Z Found 219.0974</td>
</tr>
</tbody>
</table>

Landreau CL237 05/06/03
GCT03-0597 85 (1.416) Cm (75:85-20:50)
100
103.0540

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance = 3.0 mDa / DBE: min = 0.0, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions
4029 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)

<table>
<thead>
<tr>
<th>Minimum:</th>
<th>Maximum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Calc. Mass</td>
</tr>
<tr>
<td>219.0974</td>
<td>219.0975</td>
</tr>
<tr>
<td>219.0990</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Operator's Comments

EI+
Probe at 100 deg C
1H NMR spectrum of 4b.
2H NMR spectrum of 4b.
ESMS spectrum of 4b.