Supplementary material

Polysulfones: solid organic catalysts for the chemoselective cleavage of methyl-substituted allyl ethers under neutral conditions. New strategy for alcohol protection/deprotection.

Dean Marković, Peter Steunenberg, Martin Ekstrand and Pierre Vogel*

Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, EPFL-BCH CH-1015 Lausanne (Switzerland)

Pierre.Vogel@epfl.ch
General remarks

Commercial reagents (Fluka, Aldrich) were used without purification. Solvents were distilled prior to use: THF from Na and benzophenone. Sulfur dioxide was dried by passing through a column filled with P$_2$O$_5$, Al$_2$O$_3$ for drying (Fluka 06400), Al$_2$O$_3$ basic activated Type 5016A Brockman I (Aldrich 19,944-3). Light petroleum ether used refers to the fraction boiling at 40-60°C. Solutions after reactions and extractions were evaporated in a rotary evaporator under reduced pressure. Liquid/solid flash chromatography (FC): columns of silica gel (0.040-0.63 mm, Merck No.9385 silica gel 60, 240-400 mesh). TLC for reaction monitoring: Merck silica gel 60F 254 plates; detection by UV light; Pancaldi reagent [(NH$_4$)$_6$MoO$_4$, Ce(SO$_4$)$_2$, H$_2$SO$_4$, H$_2$O] or KMnO$_4$. IR spectra: Perkin-Elmer-1420 spectrometer. 1H NMR spectra : Bruker-ARX-400 spectrometer (400 MHz); δ (H) in ppm relative to the solvent’s residual 1H signal [CHCl$_3$, δ (H) 7.27] as internal reference; all 1H assignments were confirmed by 2D-COSY-45 spectra. 13C NMR spectra : same instrument as above (100.6 MHz); δ (C) in ppm relative to solvent C-signal [CDCl$_3$, δ (C) 77.0] as internal reference; coupling constants J in Hz. MS: Nermag R-10-10C, chemical ionization (NH$_3$) mode m/z (amu) [% relative base peak (100%)]. HRMS : Jeol AX-505. Elemental analyses : Ilse Beetz, D-96301 Kronach, Germany.

Poly(methyldienecyclopentane-sulfone) (2)1

![Poly(methyldienecyclopentane-sulfone) (2)](image)

Methyldienecyclopentane (1) was purified by distillation. SO$_2$ (1.6 ml, 0.0358 mol) was transferred to frozen methyldienecyclopentane (1) (1.0 g, 12.2 mmol) on the vacuum line. Mixture was allowed to warm to –20 °C. After 2 hours, at this temperature, the excess of SO$_2$, non-reacted methyldienecyclopentene (1) and 1-methylecyclopentene was evaporated under reduced pressure (0.001 Torr). Poly(methyldienecyclopentane-sulfone) (PS) (1.3 g, 75 %) was, powdered and neutralized with aqueous solution of NaOH (0.1 N) till pH=7 and washed 3 times by turns with water and CH$_2$Cl$_2$. Neutralized polymer was dried on the vacuum line overnight.

For characterization see:

General procedure for deprotection of a allyl ethers

In two necked flask was added allyl ether (0.1 mmol), neutralized poly(methyldienecyclopentane-sulfone) (2) (10 weight%) and 2ml of cyclohexane. Reaction mixture was refluxed under inert atmosphere and followed by TLC. After reaction was finished the liberated alcohol was purified by flash chromatography.
2-(3-Methylbut-2-en-1-yloxy)-1-phenylethanol (18)

NaH (55% in oil dispersion, 2 g, 45.8 mmol) was added to a stirred solution of 1-phenylethane-1,2-diol (17) (3.16 g, 22.9 mmol) in anhydrous DMF (40 mL) under Ar atmosphere at -40 °C. Reaction mixture was heated to -10 °C and prenyl bromide (3.41 g, 22.9 mmol) was added dropwise. Reaction was followed by TLC (CH₂Cl₂/Ethyl acetate=10/1) and, after finishing, quenched with water, extracted with CH₂Cl₂, dried over MgSO₄ and purified by flash chromatography (CH₂Cl₂/Ethyl acetate=10/1).

Colorless oil, 74 %

MS (CI, NH₃): 206 ([M⁺]; 8), 189 (43), 171 (29), 137 (25), 121 (33), 107 (100), 91 (15).

¹H NMR (400 MHz, CDCl₃): 7.43-7.26 (m, 5H, H-C(aromatic)), 5.38 (t, 1H, J(H, H)=6.8, H-C(2′′)), 4.97 (ddd, 1H, J(H, H)= 9.3, J(H, H)=3.1, J(H, H)=2.5, H-C(1′)), 4.07 (d, 2H, J(H, H)=6.8, H-C(1′′)), 3.60 (dd, 1H, J(H, H)=9.9, J(H, H)=3.1, H-C(2′′)), 3.44 (dd, 1H, J(H, H)=9.9, J(H, H)=9.3, H-C(2′)), 3.00 (d, 1H, J(H, H)= 2.5, H-O)), 1.77 and 1.69 (2×s, 2×3H, 2×H-C(4′′)).

¹³C NMR (100.6 MHz, CDCl₃): 140.3 (s, C(3′′)), 137.6 (s, C(1′′)), 128.4 (d, J(C,H)=159, C(3′)), 127.7 (d, J(C,H)=161, C(4′)), 126.1 (s, J(C,H)= 156, C(2′)), 120.7 (d, J(C,H)=157, C(2′′)), 75.6 (d, J(C,H)=141, C(1′)), 72.8 (t, J(C,H)=145, C(2)), 67.6 (t, J(C,H)=141, C(1)), 25.8 and 18.0 (2×q, J(C,H)=125, 2×C(4′′)).

HRMS (MALDI): calcd for C₁₃H₁₈KO₂⁺ 245.0944 [M+K⁺], found 245.0946
NaH (55 % in oil dispersion, 0.5 g, 11.4 mmol) was added to a stirred solution of 18 (2.36 g, 11.4 mmol) in anhydrous DMF (20 mL) under Ar atmosphere at 0 °C. Reaction mixture was stirred for 1 h and methallyl bromide (1.85 g, 13.7 mmol, 1.2 eqv.) was added. Reaction was followed by TLC (petroleum ether/ethyl acetate=10/1), quenching with water, extraction with CH₂Cl₂, dried over MgSO₄ and purifications by flash chromatography (petroleum ether/ethyl acetate=10/1).

Colorless oil, 96 %
IR (film): 3063, 3029, 2971, 2915, 2858, 1952, 1810, 1771, 1716, 1651, 1454, 1197, 1059, 1027, 905.

MS (Cl, NH₃): 261 ([M+1]; 3), 260 ([M]; 4), 189 (10), 161 (100), 141 (8), 123 (27), 105 (47), 91 (11).

1H NMR (400 MHz, CDCl₃): 7.41-7.28 (m, 5H, H-C(aromatic)), 5.35 (t, 1H, J(H, H)=7.0, H-C(2′′)), 5.00 and 4.91 (2×s, 2×1H, H-C(2′′′)), 4.56 (dd, 1H, J(H, H)=7.7, J(H, H)=3.8, H-C(l)), 4.09 and 4.02 (2×dd, 2×1H, J(H, H)=11.5, J(H, H)=7.0, H-C(1′′′)), 3.93 and 3.80 (2×d, 2×1H, J(H, H)=11.5, H-C(1′′′)), 3.79 (dd, 1H, J(H, H)=10.2, J(H, H)=7.7, H₂-C(2)), 3.53 (dd, 1H, J(H, H)=10.2, J(H, H)=3.8, H₂-C(2)), 1.77, 1.75 and 1.66 (3×s, 3×3H, 2×H-C(4′′′), H-C(4′′′)).

13C NMR (100.6 MHz, CDCl₃): 144.8 (s, C(2′′)), 137.0 (s, C(1′)), 133.4 (s, C(3′′)), 128.7 (d, J(C,H)=153, C(3′)), 128.2 (d, J(C,H)=160, C(2′)), 127.5 (d, J(C,H)=159, C(4′)), 121.7 (d, J(C,H)=160, C(3′)), 112.6 (t, J(C,H)=150, C(3′′′)), 80.8 (d, J(C,H)=143, C(l)), 75.1 (t, J(C,H)=142, C(l′′′)), 73.1 (t, J(C,H)=140, C(l′′′)), 68.3 (t, J(C,H)=140, C(2′)), 26.1 and 18.4 (2×q, J(C,H)=126, 2×C(4′′′)), 20.0 (2×q, J(C,H)=126, 2×C(4′′′)).

HRMS (MALDI): calcd. for C₁₇H₂₄KO₂⁺ 299.1413 [M+K⁺], found 299.1435

Figure S2. ¹H-NMR spectrum of [1-(2-methallyloxy)-2-(3-methylbut-2-en-1-yloxy)ethyl]benzene (19)
2-(2-Methylallyloxy)-2-phenylethanol (8)

Yellowish oil, 94 %

IR (film): 3426, 2960, 2928, 1718, 1700, 1451, 1374, 1103, 905.

MS (CI, NH$_3$): 192 ([M]; 6), 161 (10), 121 (49), 105 (100), 91 (55).

1H NMR (400 MHz, CDCl$_3$ / a drop of D$_2$O): 7.43-7.26 (m, 5H, H-C(aromatic)), 4.97 (s, 1H, H-C(3′)), 4.92 (s, 1H, H-C(3′′)), 4.49 (dd, 1H, 3J(H, H) = 8.4, 3J(H, H) = 3.9, H-C(2)), 3.93 (d, 1H, 2J(H, H) = 12.3, H$_2$-C(1′′)), 3.78 (d, 1H, 2J(H, H) = 12.3, H$_2$-C(1′′)), 3.72 (dd, 1H, 2J(H, H) = 11.8, 3J(H, H) = 8.4, H$_2$-C(1)), 3.63 (dd, 1H, 2J(H, H) = 11.8, 3J(H, H) = 3.9, H$_2$-C(1′′)), 1.77 (s, 3H, H-C(4′′)).

13C NMR (100.6 MHz, CDCl$_3$): 141.9 (s, C(2′′)), 138.5 (s, C(1′)), 128.6 (d, 3J(C,H) = 159, C(3′)), 128.1 (d, 3J(C,H) = 161, C(4′)), 127.0 (d, 3J(C,H) = 156, C(2′)), 112.5 (t, 3J(C,H) = 157, C(3′′)), 81.8 (d, 3J(C,H) = 147, C(2)), 72.6 (t, 3J(C,H) = 137, C(1′′)), 67.4 (t, 3J(C,H) = 145, C(1)), 19.7 (q, 3J(C,H) = 130, C(4′′)).

HRMS (MALDI): calcd for C$_{18}$H$_{30}$KO$_6$ $^+$ 231.0787 [M+K$^+$], found 231.0751.

Figure S3. 1H-NMR spectrum of 2-(2-methylallyloxy)-2-phenylethanol (8).
2-Methyl-4-(3-methylbut-2-en-1-yloxy)butan-2-ol (20)

NaH (55% in oil dispersion, 1g, 22.9 mmol) was added to a stirred solution of 3-methylbutane-1,3-diol (2.39 g, 22.9 mmol) in anhydrous DMF (40 mL) under Ar atmosphere at 0 °C. After stirring for 1 h, prenyl bromide (3.41 g, 22.9 mmol) was added dropwise. Consumption of starting material was confirmed after 12 h by TLC (CH2Cl2/Ethyl acetate=10/1). The mixture was quenched with water, extracted with CH2Cl2, dried over MgSO4 and purified by flash chromatography (CH2Cl2/Ethyl acetate=10/1).

Colorless oil, 92 %

IR (film): 3382, 2931 1721, 1466, 1380, 1151, 880, 652.

1H NMR (400 MHz, CDCl3): δ 5.24 (m, 1H, H-C(2′)), 3.85 (d, 2H J(H, H)= 7.0 H-C(1′)), 3.56 (t, 2H, J(H, H)=6.0, H-C(4)), 1.67 (t, 2H, J(H, H)=6.0, H-C(3)), 1.65 and 1.58 (2×s, 2×3H, 2×H-C(4′)), 1.14 (s, 6H, C(1)).

13C NMR (100.6 MHz, CDCl3): δ 137.8 (s, C(3′)), 121.1 (d, J(C,H)=155, C(2′)), 70.9 (s, C(2)), 67.9 (t, J(C,H)=140, C(4)), 67.7(t, J(C,H)=140, C(1′)), 41.8 (t, J(C,H)=125, C(3)), 31.3 and 29.7, (2×q, J(C,H)= 125, C(1)), 26.5 and 18.0 (2×q, J(C,H)= 125, (C3H7)2C(3′)).

MS (Cl, NH3): 155 (2), 139 (54), 123(4), 113 (24), 101 (13, M-C6H6O), 85 (100).

HRMS (MALDI): calcd. for C10H20NaO2: 195.2543, found 195.2576.

Figure S4. 1H-NMR spectrum of 2-methyl-4-(3-methylbut-2-en-1-yloxy)butan-2-ol (20)
KH (423 mg, 10.5 mmol), washed 5 times with dry pentane and dried on vacuum line, and THF (15 mL) was added in two necked flask under nitrogen atmosphere (glove box). Solution of 20 (1.82 g, 10.5 mmol) in anhydrous THF (40 mL) was slowly added for 20 min at 0 °C. After stirring for 1 h at room temperature, in the reaction mixture was added dropwise methallyl bromide (1.7 g, 12.6 mmol, 1.2 eqv.). Reaction mixture was stirred overnight and quenched with water, extracted with ether, dried over MgSO₄ and purified by flash chromatography (petroleum ether/Ethyl acetate=10/1).

Colorless oil, 87 %

IR (film): 3074, 2971, 2930, 2858, 1652, 1448, 1378, 1364, 1166, 1098, 894.

1H NMR (400 MHz, CDCl₃): 5.24 (tm, 1H, $^3J(H, H)= 6.8$, H-C(2′)), 4.97 and 4.82 (2×s, 2×1H, H-C(2″)), 3.93 (d, 2H, $^3J(H, H)= 7.4$, H-C(1′)), 3.76 (s, 2H, H-C(1″)), 3.52 (t, 2H, $^3J(H, H)= 7.4$, H-C(4)), 1.83 (t, 2H, $^3J(H, H)= 7.4$, H-C(3)), 1.73, 1.72 and 1.66 (3×s, 3×3H, H-C(4″)), 2×H-C(4′′)), 1.20 (s, 6H, H-C(1)).

13C NMR (100.6 MHz, CDCl₃): 143.3 (s, C(3″)), 136.6 (s, C(3′)), 121.1 (d, J(C,H)=154, C(2′)), 110.7 (t, J(C,H)= 151, C(3″)), 73.9 (s, C(2)), 67.3 (t, J(C,H)=141, C(1′)), 66.3 (t, J(C,H)=141, C(4)), 65.4 (t, J(C,H)=138, C(3′)), 40.0 (t, J(C,H)=125, C(3)), 26.0, 25.9 and 25.8, (3×q, J(C,H)= 125, 2×C(1), C(4′)), 19.7 (q, J(C,H)= 125, C(4″)), 17.97 (q, J(C,H)= 125, C(4′′)).

MS (Cl, NH₃): 226 ([M]; 4), 199 (25), 175 (86), 139 (55), 113 (70), 85 (100).

HRMS (MALDI): calcd. for C₁₄H₂₆KO₂: 265.1570, found 265.1534.

Figure S5. 1H-NMR spectrum 2-Methyl-2(2-methylallyloxy)-4-(3-methyl-but-2-en-1-yloxy)butane (9)
3-Methyl-3-(2-methylallyloxy)butan-1-ol (10)

Colorless oil, 86 %

IR (film): 3445, 2922, 2852, 1457, 1376, 1145, 1100, 898.

1H NMR (400 MHz, CDCl$_3$): 4.96 and 4.91 (2×s, 2×1H, H-C(3′)), 3.90 (s, 2H, H-C(1′)), 3.67 (t, 2H, 3J(H, H)= 5.7, H-C(1)) 3.76 (s, 2H, H-C(1′′)), 3.30 (s, 1H, H-O), 1.80 (t, 2H, 3J(H, H)= 5.7, H-C(2)), 1.75 (s, 3H, H-C(4′)), 1.26 (s, 6H, H-C(4)).

13C NMR (100.6 MHz, CDCl$_3$): 142.0 (s, C(2′)), 121.1 (d, 3J(C,H)=150, C(2′)), 110.7 (t, 3J(C,H)= 151, C(3′)), 75.7 (s, C(3)), 70.9 (t, J(C,H)=153, C(1′)), 68.0 (t, J(C,H)=156, C(1)), 41.8 (t, J(C,H)=129, C(2)), 30.1, 29.8 and 19.8, (3×q, 3J(C,H)= 125, 2×C(4), C(4′)).

MS (CI, NH$_3$): 159 ([M+1]; 15), 142 (25), 123 (45), 111 (60), 95 (100), 83 (91).

HRMS (MALDI): calcd. for C$_{14}$H$_{26}$KO$_2$: 197.0944, found 197.0987.

Figure S6. 1H-NMR spectrum 3-methyl-3-(2-methylallyloxy)butan-1-ol (10)
2-O-Prenyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (22c).

A mixture of isolevoglucosenone 21 (150 mg, 1.0 mmol), prenyl alcohol (300 mg, 2.3 mmol) and triethylamine (14 µL, 0.10 mmol) was stirred at 20°C for 2h. Excess of alcohol was then eliminated by evaporation in vacuo. The residue was chromatographed on silicagel (1:9 EtOAc/petroleum ether) affording a colorless syrup, which was dissolved in THF (5 mL), cooled to –78 °C. Successively the ketone was reduced by K-selectride (1 M, 1mL). The reaction mixture was allowed to warm to r.t. and stirred overnight. Then methanol and NH₄Cl were added, after stirring for 1h, the reaction mixture was filtrated over Celite and concentrated. The crude was purified by column chromatography (silica, PE:EtOAc 1:1) to obtain 22c in a yield of 75% (150 mg, 0.7 mmol)

\[
\begin{array}{c}
\text{O} \\
22c
\end{array}
\]

Colorless oil. 75 (%)

IR (film): 2971, 2864, 1438, 1140, 924, 638, 754

\(^1\text{H NMR} (400 MHz, CDCl}_3): \delta 5.41 (s, 1H, H-C(1)), 5.38 (m, 1H, H-C(2')), 4.48 (s, 1H, H-C(4)), 4.08 (m, 2H, H-C(1a'), H-C(1b')), 3.81 (m, 2H, Hb-C(6),Hb-C(6)), 3.57 (s, 1H, H-C(4)), 3.29 (s, 1H, H-C(2)), 1.91 (m, 2H, Hb-C(3), Hb-C(3)), 1.70, 1.67 (2s, 6H, (CH}_3)2-C(3'))

\(^13\text{C NMR} (100.6 MHz, CDCl}_3): \delta 137.7 (s, C-(3')), 127.4 (s, C-(2')), 100.4 (d, \(^1\text{J(C,H)} = 175, C-(1)) 77.4 (d, \(^1\text{J(C,H)} = 150 C-(5)), 73.8 (d, \(^1\text{J(C,H)} = 145, C-(4)), 69.9 (d, \(^1\text{J(C,H)} = 140, C-(2)), 65.4 (t, \(^1\text{J(C,H)} = 145, C-(6)), 65.0 (t, \(^1\text{J(C,H)} = 133, C-(1'))), 29.6 (1 t, \(^1\text{J(C,H)} = 130, C-(3)), 25.8, 25.7 16.6 (3 q, \(^1\text{J(C,H)} = 125, (\text{CH}_3))2-C(3'))\]

MS (Cl, NH}_3): 233 ([M+18], 99), 232 (100), 215 (36), 164 (99), 130 (99), 112 (31), 81 (71)

HRMS (MALDI): Calcd. for C_{11}H_{18}O_{4}Na: 237.1103 [M+Na]^+, found: 237.1112
Figure S7. 1H-NMR spectrum of 2-O-prenyl-β-d-ribo-2,4-anhydro-3-deoxyhexopyranose (22c)

2-O-Methylprenyl-β-d-ribo-2,4-anhydro-3-deoxy-hexopyranose (22d).

Same procedure as for the preparation of 22c, using 2-methylprenylalcohol instead of prenylalcohol.

Colorless oil. (80%)

IR (film): 3562, 2901, 1190, 1008, 924, 782

1H NMR (400, MHz, CDCl$_3$): $^\delta$ 5.40 (d 1H, 3J(H-C(1),H-C(2))= 2.5, H-1), 4.50 (m, 1H, H-C(5)), 4.05 (dd, 2H, 2J(Ha-C(1’),Hb-C(1’))= 10.8, Ha-C(1’), Hb-C(2’)), 3.77 (m, 2H, Ha-C(6), Hb-C(6)), 3.56 (m, 1H, H-4), 3.30 (m,1H, H-C(2)), 190, (m, 2H, H-C(3) and H-C(3’)), 1.70-1.63 (m, 9H, C(2’)-CH$_3$, C(2’)-(CH$_3$)$_2$)
13C NMR (100.6 MHz, CDCl$_3$): δ 130.7 (s, C3’), 125.0 (s, C(2’)), 100.5 (d, 1J(C,H)= 175, C-(1)), 77.4 (d, 1J(C,H)= 150 C-(5)), 72.8 (1t, 1J(C,H)= 150, C-(4)), 69.9, (t, 1J(C,H)= 125 C-(6)), 67.0 (d, 1J(C,H)= 150, C(2)), 65.4 (t, 1J(C,H)= 133, C-(1’)), 27.6 (1t, 1J(C,H) 130, C-(3)), 20.8, 20.1 16.6 (3 q, 1J(C,H)= 125, (CH$_3$)$_2$C(3’))

MS (CI, NH$_3$): 232 ([M+18], 5), 214 ([M], 5), 234 (7), 145 (65), 99 (63), 83 (100)

HMRS (MALDI): calcd. for C$_{12}$H$_{20}$O$_4$Na: 251.1259, [M+Na$^+$] found: 251.1248

![Figure S8. 1H-NMR spectrum of 2-0-methylprenyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (22d)](image)

4-O-Methallyl-2-O-(2-methylprenyl)-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (26d)

To a solution of 22d (150 mg, 0.6 mmol) in THF at 0 °C was added NaH (40 mg, 1 mmol) and stirred at this temperature for 1h. Afterwards methallyl bromide (0.2 mL, 0.8 mmol) was added and the reaction mixture was allowed to warm to r.t.. The reaction mixture was then heated under reflux until the reaction was completed, quenched by water and extracted with CHCl$_3$, dried and concentrated. The crude was purified by column chromatography (silica PE:EtOAc 1:4) to obtain 26d in 68% (130 mg, 0.6 mmol)
Colorless oil. (quantitative)

\[[\alpha]_{25}^{25} = -56.9, \quad [\alpha]_{25}^{25} = -65.7, \quad [\alpha]_{25}^{25} = -85.0, \quad [\alpha]_{435}^{25} = -89.7, \quad [\alpha]_{405}^{25} = -86.3 \quad (C = 2.0, \text{CHCl}_3) \]

IR (film): 2925, 2811, 1453, 1376, 1106, 906, 705

1H NMR (400 MHz, CDCl$_3$): \(\delta \) 5.46 (s, 1H, H-C(1)), 4.99, 4.91 (2 d, 1H, \(^3J(H-C(1')-H-C(2')) = 6.8 \), H-C(2')), 4.61 (d, 1H, \(^3J(H-C-5)-Ha-C(6) = 5.6 \), H-C(5)), 4.01 (m, 2H, Ha-C(2'),Hb-C(2')), 3.75 (m, 1H, Ha-C(6)), 3.73 (dd, 1H, \(^2J(Ha-C(6),Hb-C(6)) = 8.4 \), Hb-6), 3.28 (m, 2 H, H-C(2) and H-C(4)), 1.87 (s, 2H, Ha-(3) and Hb-(3)), 1.70, 1.63 (2 s, 6H, C(3')-(CH$_3$)$_2$, C(3'')-CH$_3$)

13C NMR (100.6 MHz, CDCl$_3$): \(\delta \) 142.2 (s, C-(2'')), 129.8 (s, C-(2')), 121.5 (s, C-(3')), 112.3 (t, \(^1J(C,H) = 135 \), C-(3'))), 101.2 (d, \(^1J(C,H) = 175 \), C-(1)), 74.4 (d, \(^1J(C,H) = 150 \), C(5)), 72.5 (t, \(^1J(C,H) = 150 \), C-(6)), 71.9, 70.9 (2d, \(^1J(C,H) = 150 \), C-(2), C-(4)), 69.4 (t, \(^1J(C,H) = 133 \), C-(1'')), 65.4 (t, \(^1J(C,H) = 133 \), C-(1'')), 24.7 (t, \(^1J(C,H) = 130 \), C-(3')), 24.2, 19.7, 18.4 (3 q, \(^1J(C,H) = 125 \), C$_2$(C(2')',(C$_2$(CH$_3$)C(3'))

MS (Cl, NH$_3$): 300 ([M+18], 2), 282 ([M], 2), 239 (7), 134 (55), 98 (61), 83 (100)

HMRS (MALDI): calcd. for C$_{12}$H$_{26}$KO$_4$: 305.1729, [M+K$^+$] found: 305.1734

Figure S9. 1H-NMR spectrum of 4-O-methallyl-2-O-(2-methylprenyl)-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (26d)
4-O-Allyl-2-O-(2-methylprenyl)-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (25d)

Same procedure as for the preparation of 26d, using allyl bromide instead of methallyl bromide.

![Structural formula of 25d]

Colorless oil. (78%)

\[
[\alpha]_{D}^{25} = -75.7, \ [\alpha]_{D}^{25} = -65.8, \ [\alpha]_{D}^{25} = -78.0, \ [\alpha]_{D}^{25} = -107.7, \ [\alpha]_{D}^{25} = -76.2 \ (C = 2.9, \ CHCl_{3})
\]

IR (film): 2925, 2904, 1455, 1376, 1120, 906, 786

\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta 5.90 \ (m, 1H, H-C(2''))\), 5.41 \((s, 1H, H-C(1))\), 5.39, (m, 2H, Ha-C(3''), Hb-C(3'')), 4.61 \((d, 1H, \ 2J(H-C(4), H-C(5)) = 2.4, H-C(5))\), 4.04 \((m, 2H, Ha-C(1''), Hb-C(1''))\), 3.99 \((m, 2H, Ha-C(1'), Hb-C(1'))\), 3.76 \((dd, 1H, \ 2J(Ha-C(6),Hb-C(6)) = 4.8, H-C(6))\), Ha-C(6) 3.70 \((d, 1H, Hb-C(6))\), 3.34 \((d, 1H, H-C(4))\), 3.18 \((d, 1H, H-C(1))\), 1.93, 1.82 \((2m, 2J(Ha-C(3),Hb-C(3)) = 8.8, Ha-C(3), Hb-C(3))\), 172, 1.70, 1.66 \((m, 9H, CH_{3}C(3'), CH_{3}C(2''))\)

\(^13C\) NMR (100.6 MHzCDCl\(_3\)): \(\delta 135.2 \ (d, 1J(C,H) = 155, C-(2''))\), 129.8 \((s, C-(2'))\), 121.9 \((s, C-(3'))\), 121.5 \((t, 1J(C,H) = 150, C-(3''))\), 101.2 \((d, 1J(C,H) = 175, C-(1'))\), 74.4 \((d, 1J(C,H) = 150, C-(5))\), 72.5, \((d, 1J(C,H) = 155, C-(4))\), 71.9 \((d, 1J(C,H) = 150, C-(2))\), 70.9 \((t, 1J(C,H) = 140, C-(6))\), 65.6, 65.4 \((2t, 1J(C,H) = 145, C-(1'), C-(1''))\), 29.7 \((t, 1J(C,H) = 130, C-(3))\), 24.7, 20.8, 16.5 \((3q, 1J(C,H) = 125, CH_{3}C(2''), (CH_{3})_{2}C(3'))\)

MS: \((CI, NH_{3})\) 286, ([M+18], 8) 278 ([M], 6), 244 (8), 155 (75), 99 (83), 83 (100)

HRMS (MALDI): calcd. for: \(C_{15}H_{24}NaO_{4}\): 291.1572 [M+Na\(^+\)], found: 291.1512
Figure S10. 1H-NMR spectrum of 4-O-allyl-2-O-(2-methylprenyl)-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (25d)

4-O-Methallyl-2-O-prenyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (24c)

Same as for the preparation of 22d, using 22c (150 mg, 0.6 mmol) and methallyl bromide (0.2 mL, 0.8 mmol).

Colorless oil. (68%)

IR (film): 2925, 1881, 1771, 1455, 1376, 1206, 906

1H NMR (400MHz, CDCl$_3$): δ 5.58 (s, 1H, H-C(1)) 5.48 (m, 1H, H-C(2')), 5.11, 4.99 (2 s, 2 H, Ha-C(3'') and Hb-C(3'')) 4.74 (m, 1H, H-C(5)), 4.21 (m, 2H, Ha-C(1'') and Hb-C(1'')), 4.13 (m, 2H, Ha-C(1') and Hb-C(1')), 3.90 (m, 1H, 2J(Ha-C(6), Hb-C(6))= 8.4, Ha-C(6)), 3.86 (d, 1H, Hb-(6)), 3.40 (m, 2H, H-(4) and H-(2)), 2.10, 1.99 (2m, 2H, Ha-(3) and Hb-(3)), 1.89, 1.86, 170 (3 s, 9H, CH$_3$-C(2''),(CH$_3$)$_2$C(3'))

13C NMR (100.6 MHz, CDCl$_3$): δ 142.7 (s, C-(2'')), 122.9 (s, C-(3'')), 121.9 (d, 1J(C,H)= 150, C-(2')), 112.8 (t, 1J(C,H)= 135, C-(3'')), 101.4 (d, 1J(C,H)= 175, C-(1)), 74.9 (d, 1J(C,H)= 150, C-(5)), 72.9, 72.3, 72.1, (2d, 1t, 1J(C,H)= 150 C-(2), C-(4), C-(6)) 66.1 (t, 1J(C,H)= 133, C-(1'')), 65.9 (t, 1J(C,H)= 133, C-(1'')), 26.1 (t, 1J(C,H)= 130, C-(3)), 25.2, 19.7, 18.4 (3 q 1J(C,H)= 125, CH$_3$-C(2''),(CH$_3$)$_2$C(3'))

MS (CI, NH$_3$): 286 ([M+18], 10), 273 ([M],15), 235 (10), 155 (65), 100 (65), 83 (100)

HRMS (MALDI): calcd. for C$_{15}$H$_{24}$NaO$_4$: 291.1572, [M+Na$^+$] found: 291.1512

Figure S11. 1H-NMR spectrum of 4-O-methallyl-2-O-prenyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (24c)

4-O-Allyl-2-O-prenyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (23c)
Same procedure as the preparation of 26d, using 22c and allyl bromide.

Colorless oil. (quantitative).

\[\alpha \]_{\text{D}}^{25} \text{589} -105.8, \ [\alpha]_{\text{D}}^{25} \text{577} -110.7, \ [\alpha]_{\text{D}}^{25} \text{546} -108.0 \ [\alpha]_{\text{D}}^{25} \text{435} -170.1 \ [\alpha]_{\text{D}}^{25} \text{405} -190.2 \ (C = 3.0, \text{CHCl}_3)

IR (film): 2915, 2899, 1455, 1376, 1206, 906

1H NMR (400 MHz, CDCl₃): \(\delta \) 6.11 (m, 1H, H-C(2'')), 5.58 (s, 1H, H-C(1)), 5.54 (m, 1H, H-C(2'')), 5.50 (m, 2H, Ha-C(3'') and Hb-C(3'')), 4.75 (m, 1H, H-C(5)), 4.24 (m, 2H, Ha-C(1'') and Hb-C(1'')), 4.22 (m, 2H, Ha-C(2') and Hb-C(2')), 3.93 (dd, 1H, \(\frac{J}{2} \) [Ha-C(6), Hb-C(6)] = 0.8, Ha-C(6)), 3.86 (d, 1H, Hb-C(6)), 3.47(m, 1H, H-C(4)), 3.41(m, 1H, H-C(2)), 2.11, 2.00 (m, 2H, Ha-(3) and Hb-(3)), 1.86, 1.79 (s, 6H, (CH₃)₂C(3')).

13C NMR (100.6 MHz, CDCl₃): 135.7 (s, C-(3')) 125.0 (d, \(\frac{1J}{C,H} \) = 150, C-(2'')), 123.9 (s, C-(2'')), 117.0 (t, \(\frac{1J}{C,H} \) = 135, C-(3'')) 101.2 (d, \(\frac{1J}{C,H} \) = 175, C-(1)), 74.4 (d, \(\frac{1J}{C,H} \) = 150, C-(5)), 72.4 (1, \(\frac{1J}{C,H} \) = 150, C-(6)), 70.9, 70.5,2d, 1t, \(\frac{1J}{C,H} \) = 150 C-(2), C-(4), C-(6)), 69.4(t, \(\frac{1J}{C,H} \) = 133, C-(1')), 65.4 (t, \(\frac{1J}{C,H} \) = 133, C-(1'')), 24.5 (t, \(\frac{1J}{C,H} \) = 130, C-(3)), 20.7, 19.7 (2 q \(\frac{1J}{C,H} \) = 125, (CH₃)₂C(3')).

MS (Cl, NH₃): 286 ([M+18], 15) 273 ([M], 17), 188 (7), 149 (66), 100 (65), 83 (100).

HRMS (MALDI): calcd. for C₁₄H₂₂KO₄: 293.1155 [M+K⁺], found: 293.1168 (M+K).
4-O-Allyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (27)

Same procedure as for the preparation of 18, starting with 23c.

Colorless oil.

Starting with 25d: quantitative

Figure S13. 1H-NMR spectrum of 4-O-allyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (27)
4-O-Methallyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (28)

Same procedure as for 18, starting with 26d.

Colorless oil. (quantitative)

Starting with 24c: 78%

\[\alpha\]$_{589}^{25}$ -145.5, \[\alpha\]$_{577}^{25}$ -156.7, \[\alpha\]$_{435}^{25}$ -190.7, \[\alpha\]$_{405}^{25}$ -199.2 (C = 2.5, CHCl$_3$)

IR (film): 3658, 1877, 1465, 1209, 1182, 1058, 805, 765

1H NMR (400 MHz, CDCl$_3$): \(\delta\) 5.48 (s, 1H, H-C(1)), 4.97, 4.91 (s, 2H, Ha-C(3'') and Hb-C(3''')), 4.60 (d, 1H, \(^3J_{(H-C(5)-H-C(6))}\) = 5.6, H-C(5)), 4.03 (m, 2H, Ha-C(2') and Hb-C(2'')), 3.84 (s, 1H, Ha-C(6)), 3.75 (d, 1H, \(^2J_{(Ha-C(6), Hb-C(6))}\) = 8.4, Hb-C(6)), 3.53 and 3.35 (m, 2H, H-C(4) and H-C(2)), 1.98, 1.90 (s, 2H, Ha-C(3) and Hb-C(3)), 1.75 (t, 3H, CH$_3$C(2''))

13C NMR (100.6 MHz, CDCl$_3$): \(\delta\) 142.0 (s, C3''), 113.2 (t, \(^1J_{(C,H)}\) = 135, C(3'')), 102.9 (d, \(^1J_{(C,H)}\) = 175, C(1)), 77.1 (d, \(^1J_{(C,H)}\) = 150, C(5)), 74.5 (t, \(^1J_{(C,H)}\) = 150, C(6)), 73.8, 73.7 (d, \(^1J_{(C,H)}\) = 150, C(2), C(4), C(6), 67.9 (t, \(^1J_{(C,H)}\) = 133, C(1')), 65.9 (t, \(^1J_{(C,H)}\) = 133, C(1'')), 28.4 (t, \(^1J_{(C,H)}\) = 130, C(3)), 19.5, (1q, \(^1J_{(C,H)}\) = 125, CH$_3$C(2''))

MS (CI,NH$_3$): 234 ([M+18]), 216, ([M], 5), 201 (8), 125 (55), 75 (63), 83 (100)

HRMS (MALDI): calcd. for C$_{10}$H$_{16}$NaO$_4$: 223.0946 [M+Na$^+$] found 223.0955
Figure S14. 1H-NMR-spectrum of 4-O-methallyl-β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (28)

β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (29)

Same procedure as for 18, starting from 28.

Colorless oil. 75%\(^\circ\)\%

n-Buli (1.6 M in hexane, 0.29 mL, 0.464 mmol) was added dropwise to a solution of (Me3Si)2NH (0.10 mL, 0.479 mmol) in 1.5 mL of THF at 0°C. The mixture was stirred at 0°C for 15 min and cooled to −78°C. HMPA (0.080 mL) was added followed by a solution of isolevoglucosenone 21 (78 mg, 0.236 mmol) in 1.0 mL of THF. Stirring was continued at this temperature for 2 h. 2-((N,N-Bis(trifluoromethyl)sulfonyl)amino)-5-chloropyridine (157 mg, 0.40 mmol) was then added in one portion. The mixture was stirred for two hours and warmed to 20°C. Water (1 mL) was added. The solution was extracted with Et2O (5 mL, 3 times). The combined organic phases were dried (anhydrous Na2SO4) and the solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel (3:97) EtOAc/petroleum ether giving a colorless oil (58 mg, 85%).

Figure S15. 1H-NMR spectrum of β-D-ribo-2,4-anhydro-3-deoxyhexopyranose (29)

1,6-Anhydro-3,4-dideoxy-2-O-(prenyl)-4-O-(trifluoromethanesulfenyl)-β-D-erythro-hex-3-enopyranose (30/1)
[α]$_{25}^{25}$ 589 -6.8, [α]$_{25}^{25}$ 577 -6.7, [α]$_{25}^{25}$ 546 -8.0 [α]$_{25}^{25}$ 435 -17.7 [α]$_{25}^{25}$ 405 -26.2 (C = 2.9, CHCl$_3$)

IR (film): 2971, 2963, 1668, 1430, 1218, 1142, 1064, 880, 850

1H NMR (400 MHz, CDCl$_3$): δ 5.80 (m, 1H, H-C(3)), 5.60 (s, 1H, H-C(1)), 5.35 (m, 1H, H-C(3')), 4.77 (d, 1H, 3J(H-C(5), Ha-C(6)) = 3.9, H-C(5)), 4.13 (m, 2H, Ha-C(1') and Hb-C(3')), 3.98 (d, 1H, 2J(Ha-C(6), Hb-C(6))= 6.7, Ha-C(6)), 3.77 (m, 2H, H-C(4) and Hb-C(6)), 1.71, 1.78 (2s, 6H, (CH$_3$)$_2$C(3'))

13C NMR (100.6 MHz, CDCl$_3$): δ 150.6 (s, C-(4)), 138.8 (s, C-(3')), 120.6 (d, 1J(C,H) 150, C-(2')), 113.8 (d, 1J(C,H)= 170, C-(3)), 100.8 (d, 1J(C,H) 175, C-(1)), 73.1 (d, 1J(C,H)=150, C(5)), 71.9 (d, 1J(C,H)=150, C-(2)), 69.3 (t, 1J(C,H)=155, C-(6)), 66.5 (t, 1J(C,H)=155, C-(1')), 26.1, 18.2 (2q, 1J(C,H) = 125, (CH$_3$)$_2$C(3'))

MS (Cl, NH$_3$): 362 ([M+18],7), 344 ([M],15) 236 (9), 201 (75), 99 (62), 85 (100)

HRMS (MALDI): calcd. for C$_{12}$H$_{15}$F$_3$NaO$_6$S: 367.0439 [M+Na$^+$] found: 367.0467

Figure S16. 1H-NMR spectrum of 1,6-anhydro-3,4-dideoxy-2-O-(prenyl)-4-O-(trifluoromethanesulfenyl)-β-D-erythro-hex-3-enopyranose (30)

1,6-Anhydro-3,4-dideoxy-4-O-(trifluoromethanesulfenyl)-β-D-erythro-hex-3-enopyranose (31)

Same procedure as for the preparation of 18, starting from (30/1)
Colorless oil. (quantitative)

IR (film): 3664, 1765, 1355, 1119, 1082, 1043, 791, 749

1H NMR (400 MHz, CDCl₃): δ 5.81 (m, 1H, H-C(3)), 5.54 (s, 1H, H-C(1)), 4.75 (d, 1H, 3J (H-C(5), Hb-C(6)) = 4.3, H-C(5)), 3.99 (m, 1H, H-C(4) and Ha-C(6)), 3.78 (dd, 1H, Hb-C(6))

13C NMR (100.6 MHz, CDCl₃): δ 117 (d, 3J(C,H) = 165, C-(3)), 101.9 (d, 3J(C,H) = 175, C-(1)), 71.8 (d, 3J(C,H) = 150, C-(5)), 68.9 (t, 3J(C,H) = 150 C-(6)), 67.0 (d, 3J(C,H) = 150, C-(2))

MS (Cl, NH₃): 293 (M+18, 7), 275 (M, 15) 255 (10), 175 (75), 97 (77), 81 (100)

HRMS (MALDI): calcd. for C₇H₇KO₆S: 314.9552 [M+K⁺], found 314.9541.

Figure S17. ¹H-NMR spectrum of 1,6-anhydro-3,4-dideoxy-4-O-(trifluoromethanesulfonyl)-$β$-D-erythro-hex-3-enopyranose (31)