Supporting Information

New reactions in water: metal-free conversion of alcohols and ketones into α-iodoketones

José Barluenga,• María Marco-Arias, Francisco González-Bobes, Alfredo Ballesteros and José M. González.¹
Instituto de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Oviedo, 33006, Spain.
Fax: (+34) 985103450 ; Tel: (+34) 985104350 ; e-mail: barluenga@uniovi.es

Typical procedure for:

Iodination of ketones.

Cycloheptanone (5 mmol, 1 equiv, 0.56 g) was added to a solution of NaI (5.15 mmol, 1.03 equiv, 0.77 g) in water (15 mL). The flask was cooled down in an ice-water-bath and H$_2$SO$_4$ (20 mmol, 8 equiv, 1.06 mL) and H$_2$O$_2$ 33 % solution (30 mmol, 6 equiv, 3 mL) were sequentially added. The resulting mixture was heated in an oil bath (40ºC) over 7 h. The reaction mixture was then allowed to cool, transferred to a separation funnel and extracted with CH$_2$Cl$_2$ (3x25 mL). The combined organic layers were washed with H$_2$O (2x50 mL) and Na$_2$S$_2$O$_3$ 5 % solution in water (2x50 mL) and dried over anhydrous sodium sulfate. Concentration of solvents affords crude 2-iodocycloheptanone which was further purified by reduced pressure (64ºC,~10$^{-3}$ mm Hg) distillation (4.6 mmol, 1.1 g, 92 %).

Tandem oxidation-halogenation reaction:

Cyclododecanol (5 mmol, 1 equiv, 0.92 g), NaI (5.25 mmol, 1.05 equiv, 0.78 g) and H$_2$O (40 mL) were placed in a 100 mL round-bottomed flask which was cooled in an ice-water bath. Amberlyst-15-wet® (2.5 g) and H$_2$O$_2$ 33 % solution (0.1 mol, 20 equiv, 10 mL) were sequentially added and the resulting mixture was heated in an oil bath (60ºC) over 16 h. The mixture was then allowed to cool and the solid resin was recovered upon filtration and washed with CH$_2$Cl$_2$ (2x5 mL). The filtrate was transferred to a separation funnel and the aqueous phase was further extracted with CH$_2$Cl$_2$ (4x25 mL). The combined organic layers were sequentially washed with H$_2$O (2x50 mL), Na$_2$S$_2$O$_3$ 5 % solution in water (2x50 mL) and H$_2$O (2x50 mL) and dried over anhydrous sodium sulfate. Concentration of solvents followed by column chromatography (hexane/CH$_2$Cl$_2$:3/1) gives rise to 2-iodocyclododecanone (4.5 mmol, 1.4 g, 90 %); m.p. = 50-53ºC (from pentane) [(lit. 52-52.5ºC)].¹