Supplementary Information

For

A Porphyrin Nanochannel: Formation of Cationic Channels by a Protonated Saddle-distorted Porphyrin and Its Inclusion Behavior

Ryosuke Harada and Takahiko Kojima*

Department of Chemistry, Faculty of Sciences, Kyushu University, Hakozaki, Higashi-Ku, Fukuoka 812-8581, Japan

E-mail: cosyscc@mbox.nc.kyushu-u.ac.jp
Experimental Section

$[\text{H}_4\text{DPP}^{2+}]\text{Cl}_2 \cdot 4\text{CH}_3\text{CN}$. A portion of conc. HCl was added to a CHCl$_3$/CH$_3$CN solution (10 mL, 1:1 v/v) of H$_2$DPP (0.015 g, 0.012 mmol). The dark green solution immediately turned into a green solution. Slow evaporation of this solution produced green crystals of $\text{H}_4\text{DPPCl}_2 \cdot 4\text{CH}_3\text{CN}$. The crystals were isolated by filtration, and washed with CH$_3$CN. Yield: 0.012 g (68%). This compound showed efflorescence in the course of manipulation. Anal. Calcd for C$_{96}$H$_{77.5}$N$_{7.5}$O$_{1.5}$Cl$_2$ ($[\text{H}_4\text{DPP}^{2+}]\text{Cl}_2 \cdot 3.5\text{CH}_3\text{CN} \cdot 1.5\text{H}_2\text{O}$): C, 81.05; H, 5.32; N, 7.16. Found: C, 80.73; H, 5.22; N, 6.91.
Figure S1. Cyclic voltammograms of [H$_4$DPP]Cl$_2$•4CH$_3$CN in CH$_2$Cl$_2$ (above) and p-hydroquinone in CH$_3$CN (below) at room temperature.