Supporting Information

A novel high-spin heterometallic Ni$_{12}$K$_4$ cluster incorporating large Ni-azide circles and an in situ cyanomethylated di-2-pyridyl ketone

Ming-Liang Tong,*a Montserrat Monfort,b Juan Modesto Clemente Juan,c Xiao-Ming Chen,a Xian-He Bu,d Masaaki Ohba,d and Susumu Kitagawa*d

a School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China. Fax: 86 20 8411-2245; E-mail: cestml@zsu.edu.cn

b Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028-Barcelona, Spain

c Instituto de Ciencia Molecular, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Spain

d Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
‡ To a pale-yellow solution of Ni(OAc)$_2$·4H$_2$O (0.240 g, 1.0 mmol), a mixture of di-2-pyridyl ketone (dpk) (0.092 g, 0.5 mmol), sodium azido (0.065 g, 1.0 mmol) and KOTBu (0.224 g, 2.0 mmol) in acetonitrile (20 ml) was slowly added at room temperature for 4 hrs with magnetic stirring, and then maintained undisturbed at ambient temperature. After 3 d, deep-green crystals were collected by filtration, washed with cold Et$_2$O (yield ca. 72%). The same product was prepared under the same reaction conditions except for the use of anhydrous Ni(OAc)$_2$ instead of Ni(OAc)$_2$·4H$_2$O. A tetranuclear cluster5 was obtained if such reaction was carried out without potassium tert-butylate or using NaOH in place of potassium tert-butylate. Elemental analysis for 1·3MeCN·7H$_2$O C$_{98}$H$_{105}$K$_4$N$_{57}$Ni$_{12}$O$_{33}$, calcd: C, 33.92; H, 3.05; N, 23.01. Found: C, 33.79; H, 2.78; N, 22.95. IR data (KBr, cm$^{-1}$): $\nu = 3554$ m, 3398 m, 3075 w, 2251 m, 2073 vs, 1584 vs, 1569 vs, 1472 s, 1426 vs, 1351 m, 1307 m, 1270 w, 1246 w, 1209 w, 1162 w, 1130 w, 1088 s, 1059 w, 1032 m, 985 w, 920 w, 880 w, 846 w, 792 w, 766 w, 740 w, 685 w, 649 w, 637 w, 561 w, 525 w, 490 w, 453 w.

§ Crystal and structure refinement parameters. Compound 1·3MeCN·7H$_2$O: C$_{98}$H$_{105}$K$_4$N$_{57}$Ni$_{12}$O$_{33}$, $M = 3470.31$, triclinic, space group P-1 (No. 2), $a = 15.634(3)$, $b = 16.604(3)$, $c = 18.257(4)$ Å, $\alpha = 70.34(3)$, $\beta = 85.79(3)$, $\gamma = 69.34(3)$°, $V = 4170.6(14)$ Å3, $Z = 1$, $T = 293(2)$ K, F(000) = 1768, $D_C = 1.382$ g cm$^{-3}$, μ(MoKα) = 1.497 mm$^{-1}$; $R_1 = 0.0863$, $wR_2 = 0.2729$ and GOF = 1.084 for 991 parameters, 8232 reflections with $|F_o| \geq 4\sigma(F_o)$. Data were collected on a Rigaku Mercury CCD diffractometer with graphite-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). Because the compound contains rich solvated water and acetonitrile molecules, which are easily escaped from the crystals, therefore only 77% of the calculated reflections could be collected for complex 1. The structure was solved with direct methods and refined with full-matrix least-squares (SHELX-97). CCDC reference number
238449. See http://www.rsc.org/suppdata/cc/b4/b415431b for crystallographic data in .cif or other electronic format..
Scheme S1 (a) The formation of a hydrate (R’ = H) or a hemiacetal (R’ = alkyl or aryl) in the reaction of a ketone with water or an alcohol. (b) The attack of nucleophiles upon a coordinated nitrile. (c) The mechanism proposed for the base-catalyzed cyanomethylation of ketone.
Fig. S1. Top- and side-views of the Ni$_6$ cycle bridged by the azides, acetates and oxygen atoms of the dpkMeCN-H ligands in sandwich-type heterometallic Ni$_{12}$K$_4$ Cluster of 1. Ni atoms are shown in green, oxygen red, carbon brown, nitrogen blue, and potassium purple. Hydrogen atoms are omitted for clarity.
Fig. S2. Plot of the reduced magnetization for 1 ($M/N\beta$) vs H at 2K.

Fig. S3. Plot of temperature dependance of the in-phase, χ'_M and out-of-phase χ''_M ac magnetic susceptibilities.