Electronic Supplemental Information

Experimental

All reagents used were of analytical grade. 1H NMR spectra were measured on the JEOL AL-300 (300 MHz) spectrometer. Electron spray ionization mass spectra (ESI-MS) were recorded on the Applied Biosystems/MDS-Sciex API-100 spectrometer. Column chromatography was performed by using Wakogel C-200 (silica gel, 70-250 µm, Wako Chemical Co. Ltd). Melting points are uncorrected. Elemental analyses were performed at the Center of Instrumental Analysis of Gunma University.

[Equations and structures are shown here]

Synthesis of the receptors

Receptor 1

Into a solution of 2-amino-N-butyacetamide (0.70 g, 5.4 mmol) and pyridine (0.42 g, 5.4 mmol) in DMF (40 ml), was slowly added isophthaloyl dichloride (0.50 g, 2.45 mmol) for 1 h at 0 ºC under nitrogen atmosphere. The mixture was stirred at 0 ºC for 1.5 h followed by at r.t. for 15 h. After evaporation under reduced pressure, the residue was recrystallized from MeOH-chloroform to give the desired product as colorless powder. Yield 0.115 g, 12%. Mp 234-236 ºC.

1H NMR (DMSO-d_6) δ 0.86 (t, 6H, $J = 7.3$ Hz), 1.26 (six, 4H, $J = 7.3$ Hz), 1.38 (quint, 4H, $J = 6.8$ Hz), 3.06 (q, 4H, $J = 6.8$ Hz), 3.84 (d, 4H, $J = 5.9$ Hz), 7.57 (t, 2H, $J = 7.9$ Hz), 7.88 (t, 4H, $J = 5.7$ Hz), 8.01 (dd, 2H, $J_1 = 7.9$, $J_2 = 1.7$ Hz), 8.38 (s, 1H), 8.77 (t, 2H, $J = 5.7$ Hz). Anal. Calcd for C$_{20}$H$_{30}$N$_4$O$_4$: C, 61.52; H, 7.74; N, 14.35. Found C, 61.39; H, 7.73; N, 14.34.

Receptor 2a

Into a solution of 2-amino-N-phenyl acetamide (3, 0.57 g, 3.8 mmol), isophthalic acid (0.27 g, 1.65 mmol), and 1-hydroxybenzotriazole (HOBt, 0.51 g, 3.8 mmol) in DMF (35 ml), was added dicyclohexylcarbodiimide (DCC, 0.8 g, 3.88 mmol) in DMF (25 ml) at 0 ºC under nitrogen
atmosphere. The mixture was stirred at 0 °C for 1.5 h followed by at r.t. for 15 h. After filtration to remove dicyclohexylurea, the filtrate was evaporated under reduced pressure. The residue was washed with ethyl acetate and methanol, and recrystallized from DMF-MeOH to give the product as white solid. Yield 0.55 g, 78%. Mp > 280 °C.

\[^1H \text{ NMR (DMSO-}d_6\text{)} \delta 4.09 (d, 4H, J = 5.9 \text{ Hz}), 7.04 (t, 2H, J = 7.3 \text{ Hz}), 7.30 (t, 4H, J = 7.5 \text{ Hz}), 7.60 (d, 4H, J = 8.3 \text{ Hz}), 7.60 (t, 1H, J = 7.7 \text{ Hz}), 8.05 (d, 2H, J = 7.7 \text{ Hz}), 8.43 (s, 1H), 8.94 (t, 2H, J = 5.9 \text{ Hz}), 10.46 (s, 2H). \]

Anal. Calcd for C_{24}H_{22}N_{4}O_{4}: C, 66.97; H, 5.15; N, 13.02. Found C, 66.84; H, 5.18; N, 12.92. ESI-MS (negative ion mode): for [C_{24}H_{22}N_{4}O_{4}-H]^– m/z = 429.16. Found m/z = 429.2.

Half amide 5

Into a solution of isophthalic acid (0.41 g, 2.5 mmol) and HOBt (0.31 g, 2.26 mmol) in DMF (25 ml), a solution of 3 (0.42 g, 2.26 mmol) in DMF (20 ml) and a solution of DCC (0.56 g, 2.71 mmol) were dropwised at once for 30 min at 0 °C under nitrogen atmosphere. The mixture was stirred at 0 °C for 1.5 h and followed by at r.t. for 6 h. After filtration to remove dicyclohexylurea, the filtrate was evaporated under reduced pressure. The residue was redissolved in ethyl acetate (100 ml) and filtered. The filtrate was stand overnight giving the precipitate. The precipitate was collected as white solid. Yield 0.28 g, 41%. Mp 262 °C (dec). \[^1H \text{ NMR (DMSO-}d_6\text{)} \delta 4.07 (d, 2H, J = 6.1 \text{ Hz}), 7.04 (t, 1H, J = 7.5 \text{ Hz}), 7.30 (t, 2H, J = 7.7 \text{ Hz}), 7.59 (d, 2H, J = 8.6 \text{ Hz}), 8.10 (d, 1H, J = 8.6 \text{ Hz}), 8.12 (d, 1H, J = 7.7 \text{ Hz}), 8.49 (s, 1H), 9.04 (t, 1H, J = 6.1 \text{ Hz}), 10.05 (s, 1H), 13.19 (bs, 1H). \]

Receptor 2b

Into a solution of 5 (0.38 g, 1.27 mmol), HOBt (0.18 g, 1.3 mmol), and 2-amino-N-(2-pyridyl)acetamide\(^1\) (4, 0.23 g, 1.52 mmol) in DMF (30 ml), was dropwised DCC (0.31 g, 1.52 mmol) in DMF (25 ml) at 0 °C under nitrogen atmosphere. The mixture was stirred at 0 °C for 1.5 h and followed by at r.t. for 14 h. After filtration to remove dicyclohexylurea, the filtrate was evaporated under reduced pressure. The residue was washed with methanol and recrystallized from DMF-MeOH to give the product as white solid. Yield 0.34 g, 62%. Mp 255-257 °C.

\[^1H \text{ NMR (300 MHz, DMSO-}d_6\text{)} \delta 4.08 (d, 2H, J = 5.9 \text{ Hz}), 4.15 (d, 2H, J = 5.9 \text{ Hz}), 7.04 (t, 1H, J = 7.3 \text{ Hz}), 7.09 (ddd, 1H, J_1 = 7.3, J_2 = 4.8, J_3 = 0.9 \text{ Hz}), 7.30 (t, 2H, J = 7.7 \text{ Hz}), 7.59 (d, 2H, J = 8.6 \text{ Hz}), 7.61 (t, 1H, J = 7.7 \text{ Hz}), 8.05 (d, 2H, J = 8.1 \text{ Hz}), 8.05 (d, 1H, J = 8.1 \text{ Hz}), 8.30-8.32 (m, 1H), 8.43 (s, 1H), 8.94 (bs, 1H), 8.95 (bs, 1H), 10.06 (s, 1H), 10.06 (s, 1H). \]

Anal. Calcd for C_{23}H_{22}N_{4}O_{4}·3/4H_{2}O: C, 62.08; H, 5.10; N, 15.74. Found C, 61.94; H, 5.14; N, 15.64. ESI-MS (negative ion mode): Calcd for [C_{23}H_{22}N_{4}O_{4}-H]^– m/z = 430.15. Found m/z = 430.3.

Receptor 2c

Into a solution of 4 (0.57 g, 3.8 mmol), isophthalic acid (0.28 g, 1.69 mmol), HOBt (0.51 g, 3.8 mmol)
in DMF (30 ml), was added DCC (0.78 g, 3.8 mmol) in DMF (20 ml) at 0 ºC under nitrogen atmosphere. The mixture was stirred at 0 ºC for 1.5 h and followed by at r.t. for 12 h. After filtration to remove dicyclohexylurea, the filtrate was evaporated under reduced pressure. The residue was washed with ethyl acetate, and methanol, and recrystallized from DMF-MeOH to give the product as white solid. Yield 0.45 g, 61%. Mp > 246.2-247.0 ºC. \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 4.15 (d, 4H, \(J = 5.9\) Hz), 7.09 (dd, 2H, \(J_1 = 7.3, J_2 = 5.2\) Hz), 7.67 (t, 2H, \(J = 7.7\) Hz), 7.77 (dt, \(J_1 = 7.7, J_2 = 1.8\) Hz), 8.04 (d, 2H, \(J = 7.9\) Hz), 8.31 (d, 2H, \(J = 4.8\) Hz), 8.41 (s, 1H), 8.94 (t, 2H, \(J = 5.9\) Hz), 10.56 (s, 2H). Anal. Calcd for C\(_{22}\)H\(_{20}\)N\(_6\)O\(_4\)·H\(_2\)O: C, 58.66; H, 4.92; N, 18.66. Found C, 58.50; H, 5.05; N, 18.43. ESI-MS (negative ion mode): Calcd for [C\(_{22}\)H\(_{20}\)N\(_6\)O\(_4\)·H\(^+\)]\(^-\) \(m/Z\) = 431.15. Found \(m/Z\) = 431.5.

Fig. S1. Partial 1H NMR spectra of 1 upon the addition of AcO$^-$ in DMSO-d_6 at 298 K $[1] = 5.0 \times 10^{-3}$ mol dm$^{-3}$.
Fig. S2. ESI-MS (negative ion mode) of 2b·H$_2$PO$_4$⁻ (a) and 2b·H$_2$PO$_4$⁻ (b) in MeCN.
Fig. S3. UV-vis spectral changes of 2c upon the addition of H$_2$PO$_4^-$ in 0.5% DMSO-MeCN (v/v) at 298 K. [$2c$] = 1.0 × 10$^{-4}$ mol dm$^{-3}$, [H$_2$PO$_4^-$] = 0 – 6.1 × 10$^{-4}$ mol dm$^{-3}$.
Fig. S4. The plot of absorbance at 290 nm vs. [Anion]/[2c]. [2c] = 1.0 × 10^{-4} \text{ mol dm}^{-3} in 0.5\% DMSO-MeCN (v/v) at 298 K.