A. Labeling of L1-L4 with 99mTc(CO)$_3^+$.
B. Absorption and Fluorescence Studies.
C. X-ray Structure of L2.
A. Labeling of L1-L4 with 99mTc(CO)$_3^+$. Labeling was accomplished in two steps using the readily prepared IsoLink™ kits (Mallinckrodt) to generate the $[^{99m}$Tc(CO)$_3$(H$_2$O)$_3]^+$ precursor (100 µl), which was introduced to a methanol solution (0.5 mL) of the appropriate ligand (0.25 mg). The sealed vial was heated at 90°C for 20 minutes. After cooling, the reaction was checked for purity via HPLC using a Vydac C18 column (4.6mm x 25cm x 5µm) and methanol as eluant. The purity, analyzed using C18 HPLC, was >95% radiochemical purity. The labeling yields were all > 85%, and achievable at levels as low as 1 µg / ml.

![Radiochromatogram](image)

Figure S1. Radiochromatogram of the crude reaction product, $[^{99m}$Tc(CO)$_3$L3]$^+$.

B. Absorption and Fluorescence Studies

Absorbance Spectra and Extinction Coefficient

All absorbance measurements were taken using a Varian model CARY -50 Bio UV-Visible spectrophotometer. **Figure 3** shows the absorption spectrum of [Re(CO)$_3$L4]Br in ethylene glycol. Absorption maxima are seen near 321 and 414 nm. The extinction coefficients at 321 and 414 nm are 17729 and 1215 mol$^{-1}$ cm$^{-1}$ respectively.
Figure S2: Absorbance spectra of [Re(CO)₃L₄]Br in ethylene glycol at room temperature.

Fluorescence Spectroscopy

Steady state fluorescence measurements were recorded with a PTI fluorimeter. Emission was monitored from 400 to 800 nm with an excitation wavelength of 321 nm in 1 nm increments with an integration time of 0.5 sec. Samples of [Re(CO)₃L₄]Br were prepared in ethylene glycol (1×10⁻⁵ M).
Figure S3: Emission spectra of [Re(CO)$_3$L$_4$]Br in either air equilibrated or nitrogen equilibrated ethylene glycol.

Emission spectrum of the rhenium probe shows a maximum at 555 nm. As shown in Figure 4, the equilibration of the samples with a nitrogen gas atmosphere drastically increases the quantum yield of the rhenium probe. Using a standard reference material, in this case ruthenium bipyridine, a quantitative value of quantum yield can be calculated by using the following equation where Q and Q_R are the quantum yields, I and I_R are the integrated emission intensities, OD and OD_R are the optical densities, and n and n_R are the refractive indexes of the solvents of the unknown and reference materials (subscript R indicating reference).

$$Q = Q_R \frac{I}{I_R} \frac{OD_R}{OD} \frac{n^2}{n^2_R}$$

Table 1 gives the values measured and resulting quantum yields for [Re(CO)$_3$L$_4$]Br.

Table 1: Quantum Yield Data

<table>
<thead>
<tr>
<th></th>
<th>Rhenium in Ethylene Glycol (Air Equil.)</th>
<th>Rhenium in Ethylene Glycol (N$_2$ Equil.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Intensity2</td>
<td>1.99×10^8</td>
<td>3.23×10^8</td>
</tr>
</tbody>
</table>
Refractive index | 1.43 | 1.43
Quantum Yield | 0.0091 | 0.015 |

†Emission was measured between 400 and 800 nm with an excitation of 321 nm in 1 nm increments with an integration time of 0.5 sec. Excitation bandpass was 1 nm and emission bandpass was 2 nm.

Time resolved fluorescence decays were recorded using a PTI fluorimeter. The 321 nm output of the flash lamp was the excitation wavelength for emission lifetime measurements. The emission of the [Re(CO)₃L₄]Br was monitored at 555 nm. The fluorescence intensity decay was fit to a single exponential function: \(I = \alpha \exp \left(-t/\tau\right) \), where \(\tau \) is the fluorescence lifetime and \(\alpha \) is the preexponential factor. In ethylene glycol under nitrogen atmosphere the fluorescence lifetime of [Re(CO)₃L₄]Br was measured to be 16.7 \(\mu \)sec.

C. X-ray Structure of L2.

![Figure S4. The structure of L2.](image-url)