A recyclable catalyst for asymmetric transfer hydrogenation with a formic acid-triethylamine mixture in ionic liquid

Ikuo Kawasaki, ${ }^{\text {a }}$ Kazuya Tsunoda, ${ }^{\text {a }}$ Tomoko Tsuji, ${ }^{\text {a }}$ Tomoko Yamaguchi, ${ }^{\text {a }}$ Hiroki Shibuta, ${ }^{\text {a }}$ Nozomi Uchida, ${ }^{\text {a }}$ Masayuki Yamashita ${ }^{\text {a,b }}$ and Shunsaku Ohta ${ }^{*, \mathrm{~b}, \mathrm{~b}}$
${ }^{a}$ Department of Functional Molecular Chemistry, Kyoto Pharmaceutical University, Misasagi Yamashinaku, Kyoto 607-8414, Japan. E-mail: sohta@mb.kyoto-phu.ac.jp ${ }^{b}$ 21st Century COE program.

General Experimental

Melting point was measured with a Yanaco MP micro-melting-point apparatus and uncorrected. IR spectra were taken with Shimadzu IR-435 spectrophotometer. NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$) spectra were measured on Varian UNITY INOVA 400NB ($\left.{ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz},{ }^{19} \mathrm{~F}: 376 \mathrm{MHz}\right)$ and the chemical shifts were expressed in parts per million (ppm) downfield from tetramethylsilane as the internal standard $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or referenced to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left({ }^{19} \mathrm{~F}\right.$, external). Mass spectra were measured on JEOL JMS-SX 102A QQ (FAB+) spectrometer. Silica gel (Merck Art. 7737) was used for column chromatography.

Preparation of 9

(25 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2}. After stirring for 1 h at the same temperature,
1-bromo-4-chlorobutane $(1.152 \mathrm{~mL}, 10 \mathrm{mmol})$ was added and the whole was stirred
for 84 h at $100^{\circ} \mathrm{C}$. After cooling, 2-propanol $(120 \mathrm{~mL})$ was added to the mixture, then insoluble precipitate was collected by filtration and dried in vacuo to give a solid. The solid was dissolved in thionylchloride $(29 \mathrm{~mL})$ and DMF $(4 \mathrm{~mL})$ and the whole was stirred for 17 h at $90^{\circ} \mathrm{C}$. Ice water $(10 \mathrm{~mL})$ was added to the mixture at $0{ }^{\circ} \mathrm{C}$, and products were extracted with CHCl_{3} (30 $\mathrm{mL} x$ 3). The organic layer was dried over anhydrous sodium sulfate, evaporated and chromatographed $(\mathrm{AcOEt} / n$-hexane $=1 / 5)$ to give 9 as a pale yellow oil $(1.529 \mathrm{~g}, 54 \%) ; v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 2917,1588,1490,1368,1257,1158,573 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.96-2.05(4 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{t}, J$
$=6.2 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 26.3, 29.0, 44.4, 67.9, 115.1, 129.5, 136.0, 164.2; m/z $305\left(\mathrm{MNa}^{+}, 19 \%\right), 307\left[(\mathrm{M}+2) \mathrm{Na}^{+}, 13 \%\right], 309$ $\left[(\mathrm{M}+4) \mathrm{Na}^{+}, 3 \%\right] ;$ HRMS found 304.9779, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{MNa}^{+}\right)$requires 304.9782.

Preparation of 10

A solution of $9(189 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to a stirred solution of $(1 S, 2 S)$-diphenylethylenediamine ($142 \mathrm{mg}, 0.67 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.185 \mathrm{~mL}, 1.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. After stirring for 21 h at rt , a solution of $\operatorname{Di}-\mathrm{Boc}(218 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.139 \mathrm{~mL}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to the mixture and the whole was stirred for 17 h at rt . The solvent was removed under reduced pressure, sat. NaHCO_{3} aq. (5 mL) was added to the residue, and products were extracted with $\mathrm{AcOEt}(20 \mathrm{~mL} \times 3)$. The organic layer was dried over anhydrous sodium sulfate, evaporated, chromatographed (AcOEt / n-hexane $=1 / 2$) and recrystallized from AcOEt to give 10 as a colorless powder ($261 \mathrm{mg}, 70 \%$); mp $197{ }^{\circ} \mathrm{C}$; $[\alpha]^{27}{ }_{\mathrm{D}}-21.0$ (c 1.0 in CHCl_{3}); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3410,3350,2950,1686,1593,1491,1152 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.47(9 \mathrm{H}$, s), $1.90-2.00(4 \mathrm{H}, \mathrm{m}), 3.61(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 3.95(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{dd}, J=7.0,9.7 \mathrm{~Hz})$, $4.78(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 6.67(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.77-7.17$ $(10 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}): \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.4,28.3,29.1,44.5,60.0,63.9,67.2,80.6,114.1$, $127.2,127.3,127.4,127.9,128.0,128.2,128.5,129.0,133.1,137.8,138.1,161.6 ; \mathrm{m} / \mathrm{z} 559\left(\mathrm{MH}^{+}\right.$, $4 \%), 561\left[(\mathrm{M}+2) \mathrm{H}^{+}, 2 \%\right]$; HRMS found 559.2039, $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$requires 559.2033; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 62.30 ; \mathrm{H}, 6.31 ; \mathrm{N}, 5.01$ found: C, 62.54; H, 6.49; N, 5.01.

Preparation of 11

A mixture of $\mathbf{1 0}(117 \mathrm{mg}, 0.21 \mathrm{mmol})$ and 1-methylimidazole $(0.076 \mathrm{~mL}, 0.95$ mmol) was stirred for 8 h at $80^{\circ} \mathrm{C}$ under N_{2}. Excess of 1-methylimidazole was removed under reduced pressure, and the residue was washed with AcOEt and dried in vacuo to give $\mathbf{1 1}$ as a pale yellow viscous oil ($128 \mathrm{mg}, 95 \%$); $[\alpha]^{24}{ }_{\mathrm{D}}$ -33.1 (c 1.3 in MeOH); $v_{\max }(\mathrm{KBr}) \mathrm{cm}^{-1} 3340,3214,3041,2919,1696,1592$, $1511,1318,1248,1150 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.36(9 \mathrm{H}, \mathrm{s}), 1.73-1.80(2 \mathrm{H}, \mathrm{m})$, 2.00-2.05 ($2 \mathrm{H}, \mathrm{m}$), $3.87(3 \mathrm{H}, \mathrm{s}), 3.94(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=8.6 \mathrm{~Hz}), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.91-7.12(10 \mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 26.7,27.9$, $28.7,36.5,50.4,61.0,64.0,68.5,80.5,115.3,123.5,124.9,128.1,128.2,128.3,128.6,129.0,129.1$, $129.8,130.0,134.0,139.8,140.9,157.7,162.9 ;$ HRMS found $605.2803, \mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M})^{+}$requires 605.2798 .

Preparation of 12

TFA $(0.15 \mathrm{~mL})$ was added to $\mathbf{1 1}(124 \mathrm{mg}, 0.19 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2}. After stirring for 2 h at $0^{\circ} \mathrm{C}$, toluene (5 mL) was added to the mixture and the volatile was removed under reduced pressure to give $\mathbf{1 2}$ as a pale yellow viscous oil ($135 \mathrm{mg}, 97 \%$) ; $[\alpha]^{24}{ }_{\mathrm{D}}-41.6$ (c 0.5 in MeOH); $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3364,3046$, 2910, 1671, 1197, 1153; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 1.73-1.80 ($2 \mathrm{H}, \mathrm{m}$), 1.98-2.07 $(2 \mathrm{H}, \mathrm{m})$, $3.90(3 \mathrm{H}, \mathrm{s}), 3.95(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{d}, J=$ $10.8 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 6.69(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.75-7.22(10 \mathrm{H}, \mathrm{m}), 7.47(2 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 8.97(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 26.7,27.9,36.5$, $50.4,60.7,63.0,68.6,115.4,123.6,125.0,128.7,128.8,129.1,129.2,129.9,130.2,130.3,133.2$, 134.8, 136.7, 137.9, 163.3; $\delta_{\mathrm{F}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.80$; HRMS found 505.2277, $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M})^{+}$requires 505.2273; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S} 2.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.42$; H, 5.05; N, 7.20 found: C, 49.45; H, 4.82; N, 6.85.

Typical recycling procedure

Acetophenone $\mathbf{6 a}(120 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to a solution of the ionic ligand $\mathbf{1 2}(7.8 \mathrm{mg}, 0.012$ $\mathrm{mmol})$ and $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}(2.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $[\mathrm{bmim}]\left[\mathrm{PF}_{6}\right] \mathbf{1}(1.0 \mathrm{~mL})$ with stirring under N_{2}, followed by addition of the formic acid-triethylamine azeotropic mixture (bp $108{ }^{\circ} \mathrm{C} / 29 \mathrm{mmHg}$, 0.5 mL). The reaction mixture was stirred at rt for 24 h . Then, n-hexane ($5 \mathrm{ml} \times 3$) was added to the reaction mixture and the products were extracted by decantation of the upper layer, and the residual IL phase was dried in vacuo (rt/2 mmHg) for 30 min . A small portion of n-hexane layers were analyzed by GLC* to determine the yield and ee. Acetophenone ($120 \mathrm{mg}, 1.0 \mathrm{mmol}$) and formic acid-triethylamine azeotropic mixture $(0.5 \mathrm{~mL})$ were added to the remained IL solution, and the second cycle of the reaction was started.

[^0]
[^0]: * GLC condition: Column; J\&W CYCLODEXB ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$)

 Column Temp; $110{ }^{\circ} \mathrm{C}$
 Injection Temp; $200^{\circ} \mathrm{C}$
 Carrier; He ($1 \mathrm{~mL} / \mathrm{min}$)

