Expanding diversity in dynamic combinatorial libraries: simultaneous exchange of disulfide and thioester linkages

Julien Leclaire, Laurent Vial, Sijbren Otto* and Jeremy K. M. Sanders*

NMR ANALYSIS AFTER THE FIRST EQUILIBRIUM

NMR Methods and Parameters
NMR was performed using an Advance 500 Bruker instrument and a standard TCI Cryoprobe ¹H (presaturation).

NMR Spectrum (Figure 4)
1D NOESY with water presaturation during relaxation delay and mixing time (NOESYPR1D).

Solvent: H₂O/CD₃OD (90/10)
Exact field: 500.13 MHz
Exponential line broadening: 0.30 Hz
Relaxation time (D1): 8.00 seconds
Acquisition time (AQ): 3.172 seconds
Mixing time: 300 milliseconds
Number of points (TD): 65536

Fig. 4
HPLC/ESI-MS ANALYSIS OF THE LIBRARIES

LC-MS Methods and Parameters
LC-MS was performed using an Agilent 1100 series HPLC and Agilent XCT iontrap mass spectrometer. Solvents and formic acid were acquired from Romil.

HPLC Parameters
Injection volume 5µl
Flow rate 1.000 ml/min
Column: Waters symmetry C18 2.1 x 150mm (WAT106005)
Mobile phase: water with 0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B)

Gradient elution
\[
\begin{array}{|c|c|}
\hline
\text{Time (mins)} & \text{Solvent B(%)} \\
\hline
0 & 5 \\
26 & 83 \\
40 & 95 \\
45 & 95 \\
50 & 5 \\
70 & 5 \\
\hline
\end{array}
\]

MS Parameters
Mass range mode: Ultra Scan
Ion polarity: Negative mode
Ion Source: ESI
Dry temperature: 350°C
Nebuliser pressure: 55.00 psi
Dry gas flow: 12 l/min
HV capillary: 4000V

\[
\begin{array}{|c|c|}
\hline
\text{Time (mins)} & \text{Target mass:} \\
\hline
0 & 20.3 & 250 \\
20.3 & 22.7 & 450 \\
22.7 & 24.6 & 600 \\
24.6 & 25.5 & 800 \\
25.5 & 26.2 & 1000 \\
26.2 & 27.9 & 600 \\
27.9 & 29.0 & 1000 \\
29.0 & 50.9 & 1100 \\
\hline
\end{array}
\]

ICC target: 200000

Base peak chromatogramme (Fig. 5) and extracted ion traces (Fig. 6) of the final library made from 1 after exposure to oxygen.

Structures can be identified and correlated to UV peaks by analysis of the base peak chromatogram. Structures often detected as singly charged species accompanied by the corresponding dimer chelating a sodium ion.

![Fig. 5](image-url)
Fig. 6