Supplementary data

Regio- and stereoselective synthesis of enantiomerically pure [60]fullerene trisadducts with an inherently chiral e,e,e addition pattern

Nikos Chronakis and Andreas Hirsch*

Institut für Organische Chemie der Universität Erlangen, Henkestrasse 42, D-91054 Erlangen, Germany.
E-mail: andreas.hirsch@chemie.uni-erlangen.de

$(4R,5R)$-4,5-O-Isopropylidene-4,5-dihydroxy-2,6-octadiene-dioate (+)-1: The synthesis was performed according to the literature: S. Takano, A. Kurotaki, K. Ogasawara, Synthesis, 1987, 1075.

$(4R,5R)$-4,5-O-Isopropylidene-4,5-dihydroxy-2,6-octane-dioate (+)-2: A solution of (+)-1 (1.60 g, 5.3 mmol) in EtOAc (50 ml) and a catalytic amount of 10% Pd/C was stirred for 12 h at room temperature in the presence of hydrogen atmosphere. The mixture was filtered through Celite and the solvent was evaporated under reduced pressure. (+)-2 was isolated as a colourless oil (1.62 g, 100%). $[\alpha]_D^{22} (c = 0.0024$ g ml$^{-1}$, CHCl$_3$) = +31°.

δ_H(CDCl$_3$, 300 MHz) 1.23 (t, 6H, $J = 7.1$ Hz), 1.33 (s, 6H), 1.75 (m, 2H), 1.90 (m, 2H), 2.44 (m, 4H), 3.61 (m, 4H), 4.11 (q, 4H, $J = 7.1$ Hz).

δ_C(CDCl$_3$, 75 MHz) 14.20, 27.19, 27.73, 30.65, 60.41, 79.55, 108.43, 173.15. MS (FAB, NBA), m/z: 303 ([M$^+$ + 1], 30%), 287([M$^+$ − 15], 100%).

$(4R,5R)$-4,5-Bis(3-hydroxy-propyl)-2,2-dimethyl-1,3-dioxolan (+)-3: This was prepared from (+)-2 (1.60 g, 5.3 mmol) by LiAlH$_4$ reduction in dry THF, in the usual manner. Diol (+)-3 was isolated as colourless high viscous oil (1.12 g, 97%). $[\alpha]_D^{25} (c = 0.0033$ g ml$^{-1}$, CHCl$_3$) = +28.4°. δ_H(CDCl$_3$, 300 MHz) 1.36 (s, 6H), 1.53 (m, 2H), 1.70 (m, 6H), 2.30 (s, 2H, OH), 3.60–3.70 (m, 6H). δ_C(CDCl$_3$, 75 MHz) 27.63, 29.19, 27.73, 30.65, 60.41, 79.55, 108.43, 173.15. MS (FAB, NBA), m/z: 219 ([M$^+$ + 1], 72%), 203 ([M$^+$ − 15], 100%).

Synthesis of the cyclo-malonates (+)-4, (+)-5 and (+)-6: In a dry 1L round-bottomed flask equipped with gas inlet, 500 ml dropping funnel, and magnetic stirrer, (+)-3 (1.7 g, 7.8 mmol, 1.00 equiv.) was dissolved under
nitrogen in dry CH$_2$Cl$_2$ (400 ml) followed by the addition of pyridine (1.25 ml, 15.6 mmol, 2.00 equiv.). Subsequently, a solution of malonyl dichloride (1.51 ml, 15.6 mmol, 2.00 equiv.) in dry CH$_2$Cl$_2$ (200 ml) was added dropwise over a period of 3 hours. After stirring for 1 day at room temperature the mixture was concentrated with rotary evaporator and filtered over a silica plug (6 × 6 cm) with CH$_2$Cl$_2$/EtOAc 50:50 to remove polymeric material and pyridine salts. The solution was evaporated and the crude product separated by flash column chromatography on silica gel using a mixture of CH$_2$Cl$_2$/EtOAc 70:30 as eluent. The order of elution was (+)-4, (+)-5, and (+)-6.

** Compound (+)-4:** Yellowish oil (156 mg, 7%). [α]$_D^{24}$ (c = 0.0098 g ml$^{-1}$, CHCl$_3$) = +19.9°. $\delta$$_H$(CDCl$_3$, 300 MHz) 1.31 (s, 6H), 1.55 (m, 2H), 1.72–1.85 (m, 6H), 3.34 (s, 2H), 3.64 (br s, 2H), 4.09–4.25 (m, 4H). $\delta$$_C$(CDCl$_3$, 75 MHz) 22.84, 27.20, 27.59, 42.69, 65.09, 78.19, 108.53, 166.71. MS (FAB, NBA), m/z: 285 ([M$^+$ − 1], 15%), 271 ([M$^+$ − 15], 100%).

** Compound (+)-5:** White solid (320 mg, 7.1%), m.p. 134.8 °C. [α]$_D^{24}$ (c = 0.0011 g ml$^{-1}$, CHCl$_3$) = +25°. $\delta$$_H$(CDCl$_3$, 300 MHz) 1.31 (s, 12H), 1.48 (m, 4H), 1.58–1.82 (m, 12H), 3.32 (s, 4H), 3.55 (m, 4H), 4.14 (m, 8H). $\delta$$_C$(CDCl$_3$, 75 MHz) 25.64, 27.63, 29.13, 42.04, 65.41, 80.44, 108.69, 166.90. MS (FAB, NBA), m/z: 573 ([M$^+$ + 1], 30%), 557 ([M$^+$ − 15], 58%), 457 ([M$^+$ − 115], 100%).

** Compound (+)-6:** Colourless oil (120 mg, 1.8%). [α]$_D^{24}$ (c = 0.0020 g ml$^{-1}$, CHCl$_3$) = +20°. $\delta$$_H$(CDCl$_3$, 300 MHz) 1.34 (s, 18 H), 1.45–1.68 (m, 12H), 1.70–1.91 (m, 12H), 3.36 (s, 6H), 3.58 (m, 6H), 4.17 (m, 12H). $\delta$$_C$(CDCl$_3$, 75 MHz) 25.59, 27.66, 29.28, 41.90, 65.56, 80.49, 108.63, 166.96. MS (FAB, NBA), m/z: 843 ([M$^+$ − 15], 68%).

Reaction of C$_{60}$ with macrocycle (+)-5 to give 7 and 8: In a dry 500 ml two-necked flask equipped with a gas inlet, dropping funnel, and magnetic stirrer, C$_{60}$ (144 mg, 0.2 mmol) was dissolved in toluene (200 ml) under argon. Subsequently, the macrocycle (+)-5 (103 mg, 0.18 mmol) and iodine (91.5 mg, 0.36 mmol) were added, followed by the dropwise addition of a solution of DBU (107.4 µl, 0.72 mmol) in toluene (100 ml) over a period of 2 hours. The solution was stirred at room temperature for 1 day. The crude reaction mixture was filtered through a paper filter and chromatographed on a SiO$_2$ column (6 × 25 cm). Traces of C$_{60}$ and other
Impurities were eluted with toluene, and then the eluent was changed to toluene/EtOAc 80:20. Two fractions were obtained. The first consisted of the bis-fullerene adduct 8, whereas the second was the cis-2 bisadduct 7.

Compound 7: 80 mg, 34.5%. δ_H(CDCl$_3$, 400 MHz) 1.31 (s, 3H), 1.36 (s, 3H), 1.38 (s, 3H), 1.41 (s, 3H), 1.51–1.97 (m, 16H), 3.39 (dd, $J = 8.6, 8.6, 1.8$ Hz, 1H), 3.59 (dd, $J = 8.7, 8.7, 1.3$ Hz, 1H), 3.88 (m, 2H), 4.30 (m, 2H), 4.37–4.61 (m, 5H), 4.81 (dd, $J = 10.4, 10.4, 3.2$ Hz, 1H). δ_C(CDCl$_3$, 100 MHz) 24.42, 24.99, 25.43, 27.18, 27.22, 27.34, 27.66, 28.24, 28.47, 50.05, 50.17, 65.38, 65.60, 66.37, 67.60, 67.66, 70.12, 70.60, 77.68, 78.60, 78.88, 79.58, 108.34, 108.81, 135.08, 135.43, 135.90, 136.77, 136.85, 137.10, 138.99, 140.90, 141.05, 141.08, 141.37, 141.49, 141.85, 142.25, 142.78, 143.42, 143.62, 143.68, 144.12, 144.18, 144.27, 144.42, 144.47, 144.77, 144.94, 145.07, 145.27, 145.33, 145.47, 145.66, 145.82, 145.91, 146.07, 146.23, 146.39, 147.29, 147.38, 147.44, 148.67, 162.95, 163.42, 163.52, 164.00. UV/Vis (CHCl$_3$): λ_{max}/nm (ε/dm3mol$^{-1}$cm$^{-1}$) 255 (154 000), 323 (53 000), 380 (13 500, sh), 438 (3980). MS (FAB, NBA), m/z: 1288 ([M$^+$], 50%), 720 ([C$_{60}^+$], 100%).

Compound 8: 30 mg, 8.3%. δ_H(CDCl$_3$, 400 MHz) 1.41 (s, 12H), 1.70 (m, 4H), 1.82 (m, 4H), 1.99 (m, 4H), 2.11 (m, 4H), 3.72 (m, 4H), 4.54 (m, 8H). δ_C(CDCl$_3$, 100 MHz) 25.67, 27.40, 29.26, 51.87, 67.05, 71.43, 80.36, 108.76, 139.10, 140.97, 141.88, 142.19, 142.99, 143.02, 143.09, 143.45, 143.87, 144.63, 144.68, 144.89, 145.09, 145.19, 145.27, 145.50, 163.57. UV/Vis (CHCl$_3$): λ_{max}/nm (ε/dm3mol$^{-1}$cm$^{-1}$) 259 (323 000), 328 (106 000), 425 (7800). MS (FAB, NBA), m/z: 2009 [M$^+$], 720 [C$_{60}^+$].

Reaction of C$_{60}$ with macrocycle (+)-6 to give 9, (+)-10a and (−)-10b: In a dry 250 ml two-necked flask equipped with a gas inlet, dropping funnel, and magnetic stirrer, C$_{60}$ (96 mg, 0.13 mmol, 1.00 equiv.) was dissolved in toluene (150 ml) under argon. Subsequently, the macrocycle (+)-6 (102 mg, 0.12 mmol, 0.9 equiv.) and iodine (91.5 mg, 0.36 mmol, 2.7 equiv.) were added, followed by the dropwise addition of a solution of DBU (147.6 µl, 0.99 mmol, 7.5 equiv.) in toluene (60 ml) over a period of 2 hours. The solution was stirred at room temperature for 1 day. The crude reaction mixture was filtered through a paper filter and chromatographed on a SiO$_2$ column (6 × 25 cm). Traces of C$_{60}$ and other impurities were eluted with toluene, and then the eluent was changed to toluene/EtOAc 80:20. Three fractions were obtained. The first consisted of the trisadduct 9, whereas the second and the third consisted of trisadducts (+)-10a and (−)-10b, respectively.
Compound 9: Olive-green solid (2.7 mg, 1.4%). R_f (SiO$_2$, toluene/EtOAc 80:20) = 0.37. δ_H(CDCl$_3$, 400 MHz) 1.32 (s, 9H), 1.34 (s, 9H), 1.40 (m, 12H), 1.85 (m, 12H), 3.44 (ddd, J = 8, 8, 2.8 Hz, 3H), 3.56 (ddd, J = 8.7, 8.7, 2 Hz, 3H), 4.42 (m, 6H), 4.60 (m, 6H). δ_C(CDCl$_3$, 100 MHz) 24.83, 25.19, 27.23, 27.33, 29.99, 30.17, 50.47, 67.74, 68.34, 70.44, 71.30, 78.77, 79.73, 108.19, 134.38, 134.82, 139.96, 141.63, 142.30, 142.40, 142.57, 142.60, 143.14, 144.72, 144.90, 145.60, 145.65, 147.80, 164.66, 164.80. UV/Vis (CHCl$_3$): λ_{max}/nm (ε/dm3mol$^{-1}$cm$^{-1}$) 268 (89 360, sh), 313 (43 720), 335 (40 400), 469 (2800) 623 (880), 683 (790). MS (FAB, NBA), m/z: 1573 ([M$^+$], 16%) 720 ([C$_{60}$$^+$], 100%).

Compound (+)-10a: Cherry-red solid (19.1 mg, 10.1%). R_f (SiO$_2$, toluene/EtOAc 80:20) = 0.32. $[\alpha]_D^{22}$ (c = 0.00012 g ml$^{-1}$, CHCl$_3$) = +1275°. δ_H(CDCl$_3$, 400 MHz) 1.31 (s, 9H), 1.32 (s, 9H), 1.51 (m, 9H), 1.76 (m, 12H), 1.99 (m, 3H), 3.33 (m, 3H), 3.56 (ddd, J = 9.6, 9.6, 2 Hz, 3H), 4.22 (m, 6H), 4.45 (ddd, J = 10.3, 10.3, 2.5 Hz, 3H), 4.65 (ddd, J = 11.4, 7.4, 3.8 Hz, 3H). δ_C(CDCl$_3$, 100 MHz) 25.26, 25.54, 27.09, 27.21, 27.96, 28.75, 54.34, 66.60, 67.38, 70.64, 71.19, 79.32, 80.31, 107.72, 140.70, 141.12, 141.45, 142.43, 143.10, 143.74, 143.98, 144.41, 144.64, 145.22, 145.66, 146.32, 146.49, 146.63, 147.88, 162.64, 162.96. UV/Vis (CHCl$_3$): λ_{max}/nm (ε/dm3mol$^{-1}$cm$^{-1}$) 251 (55 000), 281 (47 930), 303 (40 050, sh), 380 (4910), 484 (4560), 563 (1290). CD (CHCl$_3$): 254 nm ($\Delta\varepsilon$ = +28.8), 289.2 (+17.1), 301 (-7.7), 311.2 (+13.6), 329 (+3.8), 356.2 (+13.5), 379.6 (-7.3), 385.4 (-5.7), 394.4 (-7.9), 456.2 (-4.1), 470.2 (-2.8), 485.8 (-4.6), 514.8 (+5.4), 560.6 (+13.7). MS (FAB, NBA), m/z: 1574 ([M$^+$ + 1], 100%), 720 ([C$_{60}$$^+$], 71%).

Compound (−)-10b: Cherry-red solid (73.8 mg, 39.1%). R_f (SiO$_2$, toluene/EtOAc 80:20) = 0.24. $[\alpha]_D^{23}$ (c = 0.00011 g ml$^{-1}$, CHCl$_3$) = −1389°. δ_H(CDCl$_3$, 400 MHz) 1.24 (s, 9H), 1.30 (s, 9H), 1.37 (m, 8H), 1.65 (m, 10H), 1.91 (m, 6H), 3.09 (ddd, J = 8.8, 8.8, 2.4 Hz, 3H), 3.45 (ddd, J = 8.5, 8.5, 3.6 Hz, 3H), 4.05 (ddd, J = 9.9, 9.9, 2.2 Hz, 3H), 4.17 (ddd, J = 10.5, 5.1, 5.1 Hz, 3H), 4.70 (ddd, J = 10.2, 10.2, 3.4 Hz, 3H), 4.79 (ddd, J = 10.9, 6.5, 3 Hz, 3H). δ_C(CDCl$_3$, 100 MHz) 25.25, 25.55, 27.10, 27.22, 28.30, 29.50, 54.18, 66.48, 66.90, 70.50, 71.12, 80.17, 80.36, 108.22, 140.96, 141.98, 142.43, 143.65, 143.77, 144.22, 144.60, 145.68, 145.77, 146.35, 146.38, 146.50, 146.59, 146.68, 147.79, 162.39, 162.92. UV/Vis (CHCl$_3$): λ_{max}/nm (ε/dm3mol$^{-1}$cm$^{-1}$) 251 (54 250), 281 (47 380), 303 (39 480, sh), 380 (4480), 484 (4150), 563 (1220). CD (CHCl$_3$): 254 nm ($\Delta\varepsilon$ = +28.8), 290 (−9.4), 301.4 (+5.5), 311.2 (−7.7), 329 (+4.8), 356.6 (−8.5), 379.6 (+5.1), 385.2 (+4.2), 394.8 (+6.4), 453.2 (+3.9), 470.1 (+2.8), 485.8 (+4.6), 514.8 (+5.4), 560.6 (+13.7).
469.6 (+3.0), 488 (+4.7), 515.6 (−1.8), 560.8 (−8.6). MS (FAB, NBA), \(m/z \): 1574 ([M$^+$ + 1], 66%), 720 ([C$_{60}^+$], 100%).