Supplementary Information for:

Encapsulated Transition Metal Catalysts Comprising Peripheral Zn(II)salen Building Blocks: Template-Controlled Reactivity and Selectivity in Hydroformylation Catalysis

Arjan W. Kleij,a Martin Lutz,b Anthony L. Spek,b Piet W. N. M. van Leeuwen and Joost N.H. Reeka*

a Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands. Fax: +3120-5256422; Tel: 3120-5256437; E-mail: reek@science.uva.nl
b Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. Fax: +3130-2533940; Tel:3130-2532538

Contents:

Page S2: Crystal structure determination
Page S3: Titration curves for assemblies \(1\cdot P1\), \((1)\cdot P2\) and \((1)\cdot P3\).
Page S4: Molecular modeling results (PM3 calculations) for assemblies \((1)\cdot P2\) (LEFT) and \((1)\cdot P3\) (RIGHT)
Page S5: Displacement ellipsoid plot for assembly \((1)\cdot P2\) with the adopted numbering scheme.
Crystal Structure Determination

X-ray intensities were measured on a Nonius KappaCCD diffractometer with a rotating anode (Mo-Kα, λ = 0.71073 Å) at a temperature of 150 K. The structures were solved with direct methods with the program SHELXS-97a and SIR-97b and refined with the program SHELXL-97c against F2 of all reflections. The drawings, structure calculations, and checking for higher symmetry were performed with the program PLATONd

aG. M. Sheldrick, SHELXS-97. Program for crystal structure solution, University of Göttingen, Germany, 1997

cG. M. Sheldrick, SHELXL-97. Program for crystal structure refinement. University of Göttingen, Germany, 1997

UV-vis Titration curves for assemblies $1\bullet P_1$, $(1)_3\bullet P_2$ and $(1)_3\bullet P_3$.

- **$1\bullet P_1$**:
 - $1:1$ ratio at $V_{\text{add}} = 65 \mu\text{L}$
 - Graph showing absorbance change with V_{add}.

- **$(1)_3\bullet P_2$**:
 - $3:1$ ratio at $V_{\text{add}} = 90 \mu\text{L}$
 - Graph showing absorbance change with V_{add}.

- **$(1)_3\bullet P_3$**:
 - $3:1$ ratio at $V_{\text{add}} = 90 \mu\text{L}$
 - Graph showing absorbance change with V_{add}.

S3
Molecular modeling results (PM3 calculations) for assemblies (1)$_3$•P$_2$ (LEFT) and (1)$_3$•P$_3$ (RIGHT)

(Zn = red, Cl = orange, P = yellow, N = blue, C = dark grey, H = light grey)
Displacement ellipsoid plot for assembly (1)•P2 with the adopted numbering scheme.

Selected bond distances (Å) and angles (°): Zn(1)-N(11) = 2.097(3), Zn(1)-N(12) = 2.076(3), Zn(1)-N(41) = 2.138(3), Zn(1)-O(11) = 1.946(3), Zn(1)-O(12) = 1.964(2), Zn(2)-N(21) = 2.085(3), Zn(2)-N(22) = 2.060(3), Zn(1)-N(42) = 2.132(3), Zn(2)-O(21) = 1.953(3), Zn(2)-O(22) = 1.949(2), Zn(3)-N(31) = 2.118(3), Zn(3)-N(32) = 2.069(3), Zn(3)-N(43) = 2.124(3), Zn(3)-O(31) = 1.948(2), Zn(3)-O(32) = 1.975(2), C(43)-P(41)-C(48) = 102.89(16), C(43)-P(41)-C(413) = 98.44(16), C(48)-P(41)-C(413) = 99.40(17).