Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

Supporting Information for

"Potential and Ion Switched Molecular Photonic Logic Gate"

Matteo Biancardo,^{*a,b*} Carlo Bignozzi,^{*a*} Hugh Doyle^{*c*} and Gareth Redmond^{*c*}

^a Dipartimento di Chimica, Università di Ferrara, Via Luigi Borsari, 46 - 44100 Ferrara, Italy.

^b Risø National Laboratory, Danish Polymer Centre, DK-4000 Roskilde, Denmark

^c Nanotechnology Group, Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland.

Synthesis

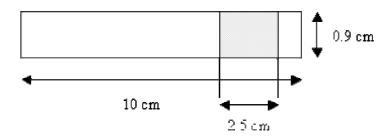
All reagents were of highest purity commercially available and were used without further purification. ¹H NMR spectra were recorded on a Varian Gemini 300 (300 MHz) spectrometer at 25°. All chemical shifts are referenced to residual solvent signals previously referenced to tetramethylsilane (TMS) and splitting patterns are designated as s (singlet) and d (doublet). UV/Visible absorption and emission spectra were recorded on a Perkin Elmer Lambda 40 spectrophotometer and a SPEX Fluoromax-2 spectrofluorometer, respectively. All IR spectra were measured on a Bruker IFS 88S FT-IR spectrometer.

cis-Bis(cyano) ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylate, sodium salt, $Na_4[Ru(dcbpy)_2Cl_2]$, (I) was prepared and characterized as previously described.¹ In a typical preparation, a suspension of 0.13 g of $[Ru(dcbpy)_2Cl_2]$ in 10 mL of water was prepared. A stoichiometric amount of concentrated NaOH was added and the pH was adjusted to 7. Addition of 200 mL of acetone resulted in the formation of a deep orange powder, $Na_4[Ru(dcbpy)_2Cl_2]$. 0.15 g of this product and 0.2 g of NaCN were refluxed in 20 mL of methanol for 3 h. The methanol was removed with a rotary evaporator. The solid # Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

was redissolved in water, and HCl was added drop wise until precipitation of an orange-red solid was complete (at pH 2.5). The solid was filtered, redissolved in methanol, loaded on a 5 x 1.5 cm silica gel column, and eluted with methanol. The first orange-red fraction was collected. A red-brown fraction, probably cyano-bridged polynuclear complexes based on the $(dcbpy)_2Ru^{2+}$ unit was retained by the column.² The orange-red fraction containing $[Ru(dcbpy)_2(CN)_2]$ was evaporated to dryness and converted to the anionic form (I), as described elsewhere.¹ ¹H NMR (D₂O): $\delta = 9.37$ ppm (d, 2 H, 6), 8.64 (s, 2 H, 3), 8.55 (s, 2H, 3'), 7.83 (d, 2 H, 5), 7.53 (d, 2 H, 6'), 7.38 (d, 2 H, 5'). IR: CN stretching (v) = 2073 and 2059 cm⁻¹. Elemental Analysis: Calculated for Na₄[Ru(dcbpy)₂(CN)₂].2H₂O (RuC₂₆H₁₆N₆O₁₀ Na₄): C, 40, 80; H, 2.11; N, 10.98. Found: C, 40.46; H, 2.14; N, 10.90.

Preparation of Nanostructured TiO₂ Thin Films


Transparent nanostructured TiO₂ (anatase) films were prepared on fluorine-doped tin oxide (FTO) glass substrates (10 Ω /cm², 0.5 µm, Glastron). Briefly, a colloidal TiO₂ dispersion was prepared by hydrolysis of 50 ml of titanium tetra(isopropoxide) (Fluka) in order to obtain a concentration of 150 - 170 g/L.³ The solution was autoclaved at 200 °C for 12 hours to yield a dispersion of 10 nm diameter particles. Addition of Carbowax 20000 (Aldrich) (60 g/L) was made to give a viscous white sol. Conducting glass substrates were masked by ScotchTM tape and the paste evenly spread using a glass rod. Following drying in air for 30 minutes, the film was fired in air at 450 °C for 2 h. The resulting film was 5 µm thick with a surface area geometric enhancement factor of *ca.* 1000.

Adsorption of (I) on TiO₂ films

Complex I was adsorbed onto nanostructured TiO_2 (anatase) thin films on FTO glass from a 10^{-4} M methanol solution over 24 hours. On adsorption of I onto TiO_2 , the Ru^{II} based MLCT absorption band centred at 456 nm in aqueous solution (pH 7) shifts to 467 nm. Also on adsorption, the emission band

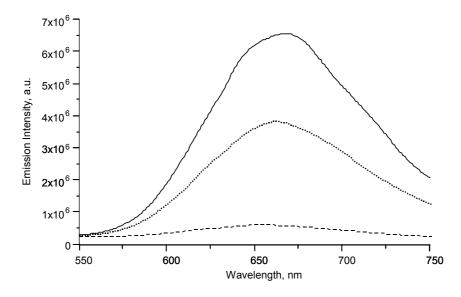
Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

centred at 650 nm in aqueous solution shifts to 668 nm. The **I**-functionalized TiO_2 thin films were then cut into finger electrodes of 0.9 x 10 cm in order to perform spectroelectrochemical experiments. The exposed surface area covered by TiO_2 for spectroelectrochemical experiments was 2.5 x 0.9 cm; see Scheme S1.

Scheme S1: Schematic of exposed surface area of the I functionalized TiO₂ thin film monitored during spectroelectrochemical experiments.

Spectroelectrochemical Characterisation

All spectroelectrochemical characterization was performed in SPEX Fluoromax-2 spectrofluorometer using an AMEL model 552 potentiostat controlled by an AMEL model 568 programmable function generator. The I-functionalized TiO₂ thin films on FTO (I-TiO₂) formed the working electrode of an open three electrode single compartment cell, with a Pt counter electrode and a Ag/AgCl reference electrode. The CH₃CN electrolyte (4 mL total volume) contained 0.1 M LiClO₄. Luminescence spectra were recorded as a function of both applied potential (*vs.* Ag/AgCl) and Cu²⁺ ion concentration.


Emission Behaviour of I-TiO₂ Versus Cu²⁺ Concentration

The effect of Cu^{2+} concentration on the luminescence of the I-TiO₂ thin films was measured using the experimental set-up described above. Fig. S1 shows the effect of added Cu^{2+} on the luminescence spectra of a I-TiO₂ thin film (for $V_{app} \ge V_{fb}$). A marked decrease in the emission band centred at 668 nm (467 nm excitation) is observed after addition of 0.5 mL of 10^{-3} M Cu(ClO₄)₂ in CH₃CN (dotted line) to

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

the spectroelectrochemical cell ($V_{app} = -0.5 \text{ V } vs. \text{ Ag/AgCl}$). The luminescence is almost completely quenched after adding a total of 1 mL of a $10^{-3} \text{ M Cu}^{2+}$ solution (dashed line).

Fig. S1: Effect of Cu^{2+} concentration on the luminescence spectrum of a **I**-TiO₂ film. Emission spectra recorded before (solid line) and after the addition of 0.5 mL (dotted) and 1.0 mL (dashed) of 10^{-3} M $Cu(ClO_4)_2$ are shown. The **I**-TiO₂ working electrode was maintained at a potential of $V_{app} = -0.5$ V vs. Ag/AgCl throughout.

References (Supporting Information)

- 1. T. A. Heimer, C. A. Bignozzi and G. J. Meyer, J. Phys. Chem., 1993, 97, 11987-11994.
- C. A. Bignozzi, S. Roffia, C. Chiorboli, J. Davila, M. T. Indelli and F. Scandola, *Inorg. Chem.*, 1989, 28, 4350-4358.
- 3. B. O'Regan and M. Grätzel, *Nature*, **1991**, *353*, 737-740.