Novel synthetic approach to PtCo alloy nanoparticles by reduction of nanometer-sized metal coordination polymers

Mami Yamada,* Masayuki Maesaka, a Masato Kurihara, b Masatomi Sakamoto, b and Mikio Miyake* a

a Department of Physical Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nom-shi, Ishikawa 923-1292, Japan. Fax: +81-761-51-1116; Tel: +81-761-51-1540; E-mail: myamada@jaist.ac.jp, miyake@jaist.ac.jp

b Department of Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.

Electronic Supplementary Information (ESI)

Fig. S1 TEM images of the compounds 1-4. The numbers in the figure refer to those of the compound. Scale bar = 20 nm.
Fig. S2 The relation between Pt/Co ratio and the IR intensity ratio of Pt^{II}-CN-Pt^{IV} to Pt^{II}-CN-Co.
Fig. S3 TGA curve of the compound 1 in the H$_2$ atmosphere (N$_2$/H$_2$ = 10, total flow rate is 110 mL/min.).
Fig. S4 IR spectra of the compound 1 before and after the transformation reaction in the H₂ atmosphere. The reaction temperature and the reaction time are noted in the figure.
Fig. 5 XPS curve in the Co2p energy range of compound 1 after the transformation reaction in H2 atmosphere at 350 °C for 3h (top) and at 400 °C for 3h (bottom). The peak at 781.9 eV attributed to the Co sites in PtII-CN-PtIV/Co negatively shifts to the peak at 778.2 eV due to metal Co.
Fig. S6 XRD patterns of the compound 1 before and after the transformation reaction in the H$_2$ atmosphere at 400 °C for 3h. The peaks marked by squares are assigned to PtCo.