A di-palladium urea complex as molecular receptor for anions

Jorge A. Tovilla, Ramón Vilar,* Andrew J. P. White

Supplementary Information

Synthesis

Materials and Apparatus. All manipulations were carried out in an atmosphere of purified and dry dinitrogen using standard Schlenk line techniques unless otherwise stated. Solvents were dried from the appropriate drying agent, degassed and stored under nitrogen. All commercially available starting materials were not further purified unless otherwise stated. ¹H, ³¹P, and ¹³C NMR spectra were recorded on either a JEOL-EX270 or a Bruker Avance 400 Ultrashield NMR spectrometer (270.17 MHz, 109.38 MHz, 67.94 MHz respectively) with TMS, H₃PO₄ and TMS respectively as internal references. IR spectra were recorded on Research Series FT-IR using KBr disks in the range 4000-500 cm⁻¹. Pd(dppp)Cl₂ and Pd(dppp)(OTf)₂ were synthesized by adaptation of previously reported procedures.^{1,2}

Synthesis of [C₆H₅NHC(=O)NH(CH₂)₂S-]₂ (1). [-S(CH₂)₂NH₂]₂·2HCl (2.252 g, 10

mmol) and K₂CO₃ (6.219 g, 45 mmol) were suspended in dry MeCN (60 ml) under a dinitrogen atmosphere; this was followed by addition of C₆H₅NCO (2.4 ml, 22 mmol). The reaction mixture was refluxed gently overnight. After allowing the mixture to cool down to room temperature a white solid precipitated which was filtered and washed with H₂O (2 x 50 ml) and Et₂O (2 x 50 ml) to afford the final product as a white powder. Yield: 2.915 g, 75 %. Elemental Analysis Found: C, 55.48; H, 5.65; N, 14.59. Calculated for C₁₈H₂₂N₄O₂S₂: C, 55.36; H, 5.68; N, 14.35. IR (v (KBr)): 3334, 3307 (N-H), 3193, 3145, 3037, 2940 (C-H), 1645, 1597 (C=O), 1574, 1498 (arom.), 696 (C-S). FAB(+)-MS m/z: 391 (67%), [M]⁺; 195 (47%), [C₆H₅NHCONH(CH₂)₂S]⁺, 163 (26%), [C₆H₅NHCONH(CH₂)₂]⁺. ¹H NMR (dmso-d₆): δ = 8.57 (s, 2H, NH), 7.38 (d, 4H, *o*-ArH, ³*J*_{*o*-m} = 7.7 Hz), 7.21 (dd, 4H, *m*-ArH, ³*J*_{*o*-m} = 7.7 Hz), 3.41 (dt, 4H, C*H*₂CH₂S, ³*J*_{NH-H} = 5.7 Hz, ³*J*_{CH-H} = 6.4 Hz), 2.85 (t, 4H, CH₂S, ³*J*_{H-H} = 6.4 Hz). ¹³C NMR (dmso-d₆): δ = 155.1, 140.3, 128.6, 121.1, 117.7, 38.2, 38.0.

Synthesis of $[C_6H_5NHC(=O)NH(CH_2)_2S]_2Pb$ (2). Compound 1 (1.306 g, 3.4 mmol), triphenylphosphine (1.754, 6.7 mmol) and $HCl_{(aq)}$ 37% (2 drops) were suspended in a degassed mixture of 1,4-dioxane (50 ml) and H₂O (5 ml) and stirred overnight at reflux under nitrogen, to reduce the disulphide bond to the corresponding thiol. After allowing the reaction to cool down to ~40°C, Pb(AcO)₂ (1.269 g, 3.4 mmol) was added along with acetone (2 ml) to help it dissolve. A yellow precipitate formed within 20 min. The reaction mixture was stirred for one further hour before the yellow precipitate was filtered and washed with water (50 ml), acetone (50 ml) and diethyl ether (2 x 30 ml) to yield the final product. Yield: 1.689 g, 84 %. Elemental Analysis

Found: C, 36.06; H, 3.60; N, 9.24. Calculated for C₁₈H₂₂N₄O₂PbS₂: C, 36.17; H, 3.71; N, 9.37. IR (v (KBr)): 3294 (N-H), 3109, 3057, 2900 (C-H), 1632 (C=O), 1574 (C=C.). FAB(+)-MS m/z: 596 (3%), $[M]^+$. ¹H NMR (dmso-d₆): $\delta = 8.53$ (s, 2H, NH), 7.38 (d, 4H, *o*-ArH, ³*J*_{*H*-*H*} = 7.7 Hz), 7.20 (dd, 4H, *m*-ArH, ³*J*_{*H*-*H*} = 7.7 Hz, ³*J*_{*H*-*H*} = 7.3 Hz), 6.87 (t, 2H, *p*-ArH, ³*J*_{*H*-*H*} = 7.3 Hz), 6.24 (t, 2H, NH, ³*J*_{H-H} = 5.4 Hz), 3.26 (dt, 4H, SCH₂C*H*₂, ³*J*_{NH-H} = 5.4 Hz, ³*J*_{CH-H} = 6.8 Hz), 3.55 (t, 4H, SCH₂, ³*J*_{H-H} = 6.8 Hz). ¹³C NMR (dmso-d₆): $\delta = 155.1$, 140.3, 128.6, 121.1, 117.7, 45.0, 27.6.

Synthesis of C₆H₅NHC(=O)NH(CH₂)₂SH (3). Pb[S(CH₂)NHCONHC₆H₅]₂ (0.597 g,

1.0 mmol) was suspended in MeOH (20 ml) and 10 ml of a 0.24 M solution of HCl (2.4 mmol) were added dropwise to the reaction. The reaction mixture changed from yellow-orange to white within 15 min. After 1.5 hrs the suspended solid was filtered off and rinsed with CHCl₃ (2 x 20 ml). The extracts were combined with the filtrate and evaporated under reduced pressure to dryness. The resulting white solid was washed with water (3 x 20 ml) to eliminate excess of acid. Yield: 0.345 g, 88 %. Elemental Analysis Found: C, 55.04; H, 6.29; N, 14.12. Calculated for C₉H₁₂N₂OS: C, 55.08; H, 6.16; N, 14.27. IR (v (KBr)): 3313 (N-H), 3107, 3028, 2943 (C-H), 1639, 1593 (C=O), 1574 (arom.), 671 (C-S). FAB(+)-MS m/z: 197 (100%), [M]⁺. ¹H NMR (dmso-d₆): δ = 8.52 (s, 1H, NH), 7.38 (d, 2H, *o*-ArH, ³*J*_{*H-H} = 7.6 Hz), 7.21 (dd, 2H, <i>m*-ArH, ³*J*_{*H-H} = 7.6 Hz, ³<i>J*_{*H-H} = 7.3 Hz), 6.89 (t, 1H, <i>p*-ArH, ³*J*_{*H-H} = 7.3 Hz), 6.32 (t, 1H, NH, ³<i>J*_{*H-H* = 5.4 Hz), 3.23 (dt, 2H, SCH₂CH₂, ³*J*_{NH-H} = 5.4 Hz, ³*J*_{CH-H} = 4.6 Hz), 2.32 (t, 1H, SH, ³*J*_{*H-H} = 5.3 Hz). ¹³C NMR (CDCl₃): δ = 156.4, 148.2, 129.2, 123.7, 120.8., 43.1, 25.2.}*</sub></sub></sub></sub></sub>

Synthesis of [(dppp)Pd(S(CH₂)₂NHC(=O)NHC₆H₅)]₂[TfO]₂ (4). [Pd(dppp)Cl₂]

(0.118 g, 0.2 mmol) and AgSO₃CF₃ (0.103 g, 0.4 mmol) were dissolved in dry THF (10 ml) under a dinitrogen atmosphere and in the absence of light. The reaction mixture was stirred overnight and the solid AgCl formed was filtered off. The resulting filtrate containing [Pd(dppp)][CF₃SO₃]₂ was added to a freshly prepared mixture of HS(CH₂)₂NHC(=O)NHC₆H₅ (0.039 g, 0.2 mmol) and NaO'Bu (0.019 g, 0.2 mmol) in dry THF (10 ml). The reaction mixture was stirred for 3 h changing color from light yellow to orange. After this time it was filtered under dinitrogen to eliminate traces of palladium metal formed during the reaction. The filtrate was concentrated under reduced pressure down to a half its volume (ca. 10 ml). Diethyl ether was added to the concentrated solution and the final product precipitated out of solution. The solid was filtered, washed with hexane (10 ml), and dried under reduced pressure. Yield: 97% (0.167 g). Anal. Found: C, 51.36; H, 4.19; N, 3.14. Calcd. for $C_{74}H_{74}F_6N_4O_8P_4Pd_2S_4$: C, 51.48; H, 4.32; N, 3.25. IR (KBr) v = 3363 (N-H), 3054 (aromatic C-H), 2925 (aliphatic C-H), 1699 (C=O). FAB(+)-MS (m/z): 1578 (50%) $[(Pd(dppp)SR)_2(CF_3SO_3)]^+$. ³¹P NMR (CDCl₃): $\delta = 11.0$ (s). ¹H NMR (CDCl₃): $\delta =$ 1.99 (m, 4H, PCH₂CH₂), 2.54 (m, 4H, SCH₂), 2.92 (m, 8H, PCH₂), 5.97 (m, 2H, $S(CH_2)_2NH$, 6.97 (t, 2H, ArH, ${}^{3}J_{H-H} = 7.2$ Hz), 7.22 – 7.55 (several signals, 50H, ArH), 8.34 (m, 2H, N*H*-Ph).

Synthesis of Na{[(dppp)Pd(S(CH₂)₂NHC(=O)NHC₆H₅)]₂[TfO]₃} (5). [(dppp)PdCl₂] (0.118 g, 0.2 mmol) and AgSO₃CF₃ (0.103 g, 0.4 mmol) were suspended in dry CH₂Cl₂ (10 ml) under N₂ and in the absence of light. The reaction mixture was stirred overnight and the solid formed (AgCl) was filtered off. The formation of intermediate [(dppp)Pd][CF₃SO₃]₂ was confirmed by ³¹P-NMR spectroscopy (singlet at 17.9 ppm # This journal is © The Royal Society of Chemistry 2005

in CDCl₃). The resulting filtrate was added to a freshly made mixture of product $HS(CH_2)_2NHC(=O)NHC_6H_5$ (0.049 g, 0.2 mmol) and NaCO(CH₃)₃ (0.019 g, 0.2 mmol) in dry CH₂Cl₂ (10 ml). Stirring was kept for three further hours. The reaction mixture was filtered to eliminate palladium metal and the filtrate was concentrated at reduced pressure down to a half (10 ml). Crystals suitable for X-ray analysis were obtained by crystallisation from a bi-layer of CH₂Cl₂ and hexane (20 ml). Yield: 36% (0.068 g). Anal Found: C, 47.78; H, 4.04; N, 2.89. Calcd. for $C_{75}H_{74}F_9N_4NaO_{11}P_4Pd_2S_2$: C, 47.45; H, 3.93; N, 2.95. IR (KBr) v = 3345 (N-H), 3056 (aromatic C-H), 2924 (aliphatic C-H), 1666 (C=O), 1552 (CF₃SO₃). MS (FAB⁺; m/z (relative intensity)): 1898 (4%) [M⁺], 1749 (6%)

[(Pd(dppp)(S(CH₂)₂NH(CO)NHC₆H₅)₂(CF₃SO₃)₂Na⁺], 1578 (50%) [(Pd(dppp) S(CH₂)₂NH(CO)NHC₆H₅)₂(CF₃SO₃)⁺]. ³¹P-NMR (109.18 MHz, CDCl₃): δ = 9.0. ¹H-NMR (400.13 MHz, Acetone-d₆): δ = 1.29 (s, 4H, PCH₂CH₂), 2.10 (m, 4H, SCH₂), 2.21 (m, 4H, SCH₂CH₂), 3.13 (broad s, 8H, PCH₂), 5.79 (t, 2H, S(CH₂)₂NH, ³J_{H-H} = 6 Hz), 6.95 (t, 2H, ArH, ³J_{H-H} = 7.4 Hz), 7.26 (t, 4H, ArH, ³J_{H-H} = 7.8 Hz), 7.47 – 7.65 (several signals, 44H, ArH), 8.07 (s, 2H, NH-Ph).

Titrations Experiments and Calculation of Association Constants

A typical anion titration was carried out in the following way: A host stock solution is done by dissolving the metal complex 4 (2.1 mg, 1.3 μ mol) in dmso-d₆. The guest stock solution (i.e. the corresponding anion; in this case bromide) was prepared by dissolving Bu₄NBr (5.2 mg, 0.016 mmol) in 1.5 ml of the previous stock solution of 4. An initial aliquot (0.5 ml) of the host stock solution was placed into a NMR tube and its ¹H NMR spectrum was determined. Additions of increasing volumes of the guest stock solution were carried out, with a micro syringe into the NMR tube, to reach, at # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

the end, c.a. 13 equivalents. The ¹H NMR spectra of all the samples were measured and the changes in the chemical shifts of the urea and aromatic protons recorded. To confirm that throughout the experiment the metalla-host did not decompose, the ³¹P NMR of the solution was measured at the beginning and at the end of the titration. The titration data obtained using ¹H-NMR spectroscopy were analyzed by fitting to a simple 1:1 binding isotherm using a nonlinear curve fitting program (SPECFIT/32).³ From this analysis the association constants (see Table 1 in manuscript) were calculated.

X-Ray Structures

Fig. S1	The molecular structure of the complex cation present in the crystals of 4 .
Fig. S2	The molecular structure of the complex cation present in the crystals of 4 (10% probability ellipsoids).
Fig. S3	The molecular structure of the complex cation in the structure of 4 showing the disorder of the encapsulated triflate anion.
Fig. S4	The molecular structure of the complex cation present in the crystals of 5 .
Fig. S5	The molecular structure of the complex cation present in the crystals of 5 (30% probability ellipsoids).
Fig. S6	The molecular structure of 5 showing the disorder of the triflate anions.

The included water molecule in **5** is disordered over at least three separate sites. One of these is not that far away (*ca.* 2.65 Å) from a chlorine of one of the included dichloromethane molecules that has not been split. However, this dcm does show evidence of disorder that has been dealt with by allowing the thermal ellipsoids to

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

expand, and thus this apparent short separation is not considered to be real and is

merely an unfortunate consequence of the disorder.

Fig. S1

- # Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

Fig. S3

- # Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

Fig. S5

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2005

Fig. S6

References

- 1 W. L. Steffen, G. J. Palenik, *Inorg. Chem.*, **1976**, 15 (10), 2432-2439.
- S. Fallis, G. K. Anderson, N. P. Rath, *Organometallics*, 1991, 10 (9), 3180-3184.
- R. A. Binstead, A. D. Zuberbühler, B. Jung, Spectrum Software Associate, Version 3.0.36, 2004.