Supplementary Information

The Inhibition of Factor Inhibiting Hypoxia-Inducible Factor (FIH) by β-Oxocarboxylic acids

Synthesis

Materials and methods:
Reagents and solvents used were obtained from commercial sources unless otherwise stated. Flash chromatography was performed using silica gel (0.125-0.25 mm, 60-120 mesh) as the stationary phase. Thin layer chromatography (TLC) was performed on aluminium plates pre-coated with silica gel (Merck silica gel 60 F254 1.05554), which were visualized by the quenching of UV fluorescence (using an irradiation wavelength $\lambda_{\text{max}} = 254nm$), and/or by staining with iodine or KMnO$_4$ in solution, followed by heating. Proton magnetic resonance spectra (1H NMR) were recorded on Bruker DQX 400 (400MHz), Bruker DRX500 (500MHz), and Bruker AMX500 (500MHz) spectrometers at ambient temperature. Carbon magnetic resonance spectra (13C NMR) were recorded on Bruker DPX 400 (100.6MHz), Bruker DQX 400 (100.6MHz), Bruker DRX500 (125.8MHz), and Bruker AMX500 (125.8MHz) spectrometers at ambient temperature. Coupling constant (J) are ±0.5 Hz. Chemical shifts (δ) are quoted in parts per million (ppm) and are referenced to the residual solvent peak. High-resolution mass spectra were recorded on a VG Autospec spectrometer by chemical ionization or on a Micromass LCT electrospray ionization mass spectrometer operating at a resolution of 5000 full width half height. Synthetic procedures follow those in the literature1 except where stated.

General procedure for the condensation of amines with diethylethoxymethylene malonate:
A mixture of amine (1 eq) and diethylethoxymethylene malonate (1 eq) were heated at 80°C for an hour under nitrogen. On cooling to room temperature, in some cases a solid appeared, which was recrystallised from ethanol, filtered, dried and directly used for the next step. In cases where the reaction mixture was a liquid, it was purified by column chromatography (silica gel; EtOAc: petroleum ether) to give the desired compounds (2 or 6) in 80-85% yield.

General procedure for the cyclisation to keto-esters:
To the secondary amine (2 or 6) was added diphenylether (12-15 ml/gm); the solution was slowly heated to refluxing temperature and heated for 1-1.5 hr. On cooling to room temperature, a solid appeared which was then washed thoroughly with hexane, filtered and dried. The product thus obtained was directly used for the saponification step.

General procedure for the saponification of the keto-esters:
To the keto-ester (1 eq) was added 10% potassium hydroxide solution (2ml/mmoll) and it was refluxed for 0.5-1 h, cooled to room temperature, washed with ethyl acetate. The aqueous layer was acidified with 1N
HCl to pH~2 when a solid appeared which was filtered and washed thoroughly with water and dried under vacuum.

Preparation of the primary amines for the coupling with diethylethoxymethylene malonate:

\[
\begin{align*}
\text{RCOCl, Et}_3\text{N} & \quad \text{DCM, 0°C} \\
\text{NH}_2 & \quad \text{H}_2, \text{PtO}_2
\end{align*}
\]

\(R = \text{Me}; 5b \)
\(R = \text{Ph}; 5c \)

General procedure for the amide coupling reactions:

To a solution of the acid (1 mmol) in dichloromethane (10 mL) at 0°C was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.2 mmol), followed by 1-hydroxybenzotriazole (1.2 mmol) and Et\(_3\)N (1.5 mmol) and it was stirred under nitrogen for 5 minutes. Then to this the amine (1.5 mmol) was added, followed by another portion of Et\(_3\)N (1.5 mmol). The reaction mixture was stirred for 7-8 hs under nitrogen at room temperature. After this it was washed with saturated sodium bicarbonate solution (3 x 10 mL), followed by saturated citric acid solution (3 x 10 mL) and finally by water. Drying over sodium sulfate, filtration and evaporation of the solvent under reduced pressure yielded the crude amide, which was column chromatographed (silica gel; EtOAc : petrol ether) to give the purified product in 90% yield.

Analytical data:

- Diethyl-[(quinolin-8-ylamino)methylene]malonate 2a: \(\delta_\text{H} (400\text{MHz; CDCl}_3) 12.5 (1 \text{H, d, } J 14.5), 9.0 (1 \text{H, brs, } J 14.5), 7.57-7.48 (4 \text{H, m, } J 7.27 (1\text{H, s, } J 4.42 (2 \text{H, q, } J 4.30 (2 \text{H, q, } J 1.47 (3 \text{H, t, } J 1.38 (3 \text{H, t, } J 7); \delta_\text{C} (100\text{MHz; CDCl}_3) 175, 168, 166.2, 149.5, 148.9, 136, 128.5, 126.5, 122.5, 122.2, 110.5, 95.3, 60.4, 60.2, 14.4, 14.3; m/z (EI) 313.1188 (M\text{~}^+ - \text{H}\text{~}^+ \text{ for C}_{17}\text{H}_{17}\text{N}_2\text{O}_4 \text{ requires 313.1188}).

- Ethyl-4-oxo-1,4-dihydro-1,10-phenanthroline-3-carboxylate 3a: \(\delta_\text{H} (400\text{MHz; CDCl}_3) 8.99 (1 \text{H, d, } J 3), 8.48 (1 \text{H, d, } J 9), 8.31 (1 \text{H, d, } J 7), 7.76 (1 \text{H, d, } J 9), 7.36-7.01 (3 \text{H, m, } J 4.46 (2 \text{H, q, } J 7), 1.45 (3 \text{H, t, } J 7); \delta_\text{C} (100\text{MHz; CDCl}_3) 175.5, 174.3, 149.6, 136.4, 136.9, 129.7, 124, 123.2, 122.2, 121.8, 118.8, 114.9, 61.2, 14.4; m/z (EI) 269.0926 (M\text{~}^+ + \text{H}\text{~}^+ \text{ for C}_{15}\text{H}_{13}\text{N}_2\text{O}_3 \text{ requires 269.0926}).

- 4-Oxo-1,4-dihydro-1,10-phenanthroline-3-carboxylic acid 4a: \(\delta_\text{H} (400\text{MHz; DMSO-d}_6) 15.37 (1 \text{H, brs, } J 3.5), 9.06 (1 \text{H, d, } J 3.5), 8.62 (1 \text{H, s, } J 8.52 (1 \text{H, d, } J 8), 8.10 (1 \text{H, d, } J 9), 7.92 (1 \text{H, d, } J 9), 7.84 (1 \text{H, m, } J 100\text{MHz; DMSO-d}_6; \text{Me}_4\text{Si}) 178.5, 166.9, 151.3, 144.4, 139, 137.77, 137.69, 130.36, 126, 125.9, 124.2, 121.9, 111; m/z (EI) 241.0613 (M\text{~}^+ + \text{H}\text{~}^+ \text{ for C}_{13}\text{H}_{9}\text{N}_2\text{O}_3 \text{ requires 241.0613}).

- Diethyl-[(1-naphthylamino)methylene]malonate 2b: \(\delta_\text{H} (400\text{MHz; CDCl}_3) 11.80 (1 \text{H, d, } J 13), 8.68 (1 \text{H, d, } J 13), 8.05
(1 H, d, J 8.5), 7.90 (1 H, d, J 7.5), 7.71 (1 H, d, J 8.5), 7.65-7.55 (3 H, m), 7.5 (1 H, t, J 8), 4.39 (2 H, q, J 7), 4.28 (2 H, q, J 7), 1.43 (3 H, t, J 7), 1.35 (3 H, t, J 7); δc (100MHz; CDCl3) 175.2, 153.5, 149.5, 148.9, 136, 128.6, 126.9, 126.7, 125.7, 125.5, 122.5, 120.5, 110.4, 110, 60.5, 60.2, 14.5, 14.4; m/z (EI) 314.1392
(M^+ + H^+ for C_{18}H_{23}NO_{4} requires 314.1392). Ethyl-4-oxo-1,4-dihydrobenzo[h]quinoline-3-carboxylate 3b: δH (400MHz; DMSO-d6) 12.63 (1 H, bs), 8.67 (1 H, bs), 8.18 (1 H, dd, J 3.5, 5), 7.81-7.78 (2 H, m), 7.39 (1 H, dd, J 2.5, 5), 7.13 (1 H, dd, J 7.5, 6.5), 7.01-7.10 (1 H, m), 4.24 (2 H, q, J 7), 1.31 (3 H, t, J 7); δc (100MHz; DMSO-d6) 156, 144.2, 138.1, 135.6, 130.9, 129.7, 129.6, 128.1, 127.5, 124.2, 123.2, 122.6, 118.4, 110.6, 60.4, 15.2; m/z (EI) 266.0817 (M^+ - H^+ for C_{10}H_{13}NO_{4} requires 266.0817). 4-Oxo-1,4-dihydrobenzo[h]quinoline-3-carboxylic acid 4b: δH (400MHz; DMSO-d6) 8.75 (2 H, bs), 8.21 (1 H, d, J 9), 8.15 (1 H, d, J 9), 8.0 (1 H, d, J 9), 7.87 (1 H, d, J 3.5), 7.86 (1 H, d, J 9); δc (100MHz; DMSO-d6) 178.6, 167.1, 144.3, 138.1, 135.7, 130.7, 129.9, 128.8, 127.6, 124, 123.1, 122.7, 121.2, 110.6; m/z (EI) 238.0504 (M^+ - H^+ for C_{10}H_{13}NO_{4} requires 238.0504). Diethyl-((anilinomethyl)malonate)malonate 6a: δH (400MHz; CDCl3) 10.01 (1 H, d, J 13), 8.53 (1 H, d, J 13), 7.37 (1 H, d, J 8), 7.35 (1 H, d, J 7.5), 7.16-7.12 (3 H, m), 4.31 (2 H, q, J 7), 4.24 (2 H, q, J 7), 1.38 (3 H, t, J 7), 1.32 (3 H, t, J 7); δc (100MHz; CDCl3) 169, 165.7, 151.9, 139.2, 129.8, 117.1, 93.58, 60.4, 60, 14.5, 14.3; m/z (EI) 264.1236 (M^+ + H^+ for C_{18}H_{21}NO_{5} requires 264.1236). Diethyl-([3-(acetylamino)phenyl]amino)methylene)malonate 6b: δH (400MHz; CDCl3) 13.5, 8.48 (1 H, d, J 13.5), 7.68 (1 H, bs), 7.53 (1 H, bs), 7.30-7.26 (1 H, m), 7.15 (1 H, d, J 8), 6.86 (1 H, d, J 8), 4.28 (2 H, q, J 7), 4.24 (2 H, q, J 7), 2.19 (3 H, s), 1.36 (3 H, t, J 7), 1.32 (3 H, t, J 7); δc (100MHz; CDCl3) 168.8, 168.6, 165.7, 151.7, 139.9, 139.5, 130.2, 115.8, 112.6, 108.6, 93.7, 60.5, 60.2, 24.6, 14.5, 14.3; m/z (EI) 321.1450 (M^+ + H^+ for C_{18}H_{21}NO_{5} requires 321.1450). Diethyl-([3-(benzylamino)phenyl]amino)methylene)malonate 6c: δH (400MHz; CDCl3) 11.01 (1 H, d, J 13.5), 8.51 (1 H, d, J 13.5), 8.06 (1 H, brs), 7.9 (1 H, brs), 7.88 (1 H, brs), 7.67 (1 H, s), 7.54-7.21 (5H, m), 6.93-6.90 (1 H, m), 4.30 (2 H, q, J 7), 4.25 (2 H, q, J 7), 1.37 (3 H, t, J 7); δc (100MHz; CDCl3) 168.8, 165.8, 165.7, 151.7, 140, 139.5, 134.5, 132, 130.3, 128.8, 127, 116.3, 112.9, 109, 93.8, 60.4, 60.2, 14.5, 14.3; m/z (EI) 383.1607 (M^+ - H^+ for C_{22}H_{23}NO_{5} requires 383.1607). Diethyl-([3-(anilinocarbonyl)phenyl]amino)methylene)malonate 6d: δH (400MHz; CDCl3) 11.11 (1 H, d, J 13.5), 8.53 (1 H, d, J 13.5), 8.07 (1 H, brs), 7.68-7.66 (3 H, m), 7.59 (1 H, d, J 7.5), 7.48 (1 H, t, J 7.5), 7.40 (1 H, d, J 7.5), 7.38 (1 H, d, J 7), 7.28 (1 H, d, J 9), 7.17 (1 H, t, J 7), 4.29 (2 H, q, J 7), 4.25 (2 H, q, J 7), 1.36 (3 H, t, J 7), 1.28 (3 H, t, J 7); δc (100MHz; CDCl3) 168.9, 165.6, 164.8, 151.2, 139.8, 137.7, 136.9, 130.2, 129.1, 124.8, 122.7, 120.3, 120, 115.9, 94.6, 60.6, 60.3, 14.5, 14.3; m/z (EI) 383.1607 (M^+ - H^+ for C_{22}H_{23}NO_{5} requires 383.1607). Diethyl-([3-(benzylaminocarbonyl)phenyl]amino)-methylene)-malonate 6e: δH (400MHz; CDCl3) 11.09 (1 H, d, J 13.5), 8.53 (1 H, d, J 13.5), 7.64-7.23 (9H, m), 6.56 (1 H, brs), 4.65 (2 H, d, J 6), 4.33 (2 H, q, J 7), 4.26 (2 H, q, J 7), 1.37 (3 H, t, J 7), 1.32 (3 H, t, J 7); δc (100MHz; CDCl3) 168.9, 166.4, 165.4, 151.3, 139.7, 137.8, 136.2, 130, 128.8, 127.9, 127.7, 122.5, 119.9, 115.9, 94.4, 60.5, 60.2, 44.3, 14.5, 14.3; m/z (EI) 397.1763 (M^+ + H^+ for C_{22}H_{23}NO_{5} requires 397.1770). Diethyl-([3-(cyanophenyl)amino]methylene)malonate 6f: δH (400MHz; CDCl3) 11.08 (1 H, d, J 13), 8.45 (1 H, d, J 13),
Electronic Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

7.51-7.26 (4H, m), 4.32 (2H, q, J 7), 4.26 (2H, q, J 7), 1.38 (3H, t, J 7), 1.34 (3H, t, J 7); δC (100MHz; CDCl3) 168.7, 165.2, 150.6, 140.2, 130.8, 127.9, 121.3, 119.8, 117.9, 114, 95.7, 60.8, 60.5, 14.4, 14.2; m/z (EI) 311.1008 (M+Na+ for C13H10NO2 requires 311.1008). Ethyl-4-oxo-1,4-dihydroquinoline-3-carboxylate 7a: δH (400MHz; DMSO-d6) 12.31 (1H, brs), 8.54 (1H, d, J 4.5), 8.15 (1H, d, J 8.5), 7.70-7.67 (1H, m), 7.60 (1H, d, J 8.5), 7.41-7.38 (1H, m), 4.21 (2H, q, J 7), 1.28 (3H, t, J 7); δC (100MHz; DMSO-d6) 174.3, 165.4, 145.7, 140.6, 133.1, 128.1, 126.5, 125.9, 119.6, 111, 60.4, 15.2; m/z (EI) 216.0661 (M+H+ for C12H10NO5 requires 216.0661). Ethyl-7-(acetylamino)-4-oxo-1,4-dihydroquinoline-3-carboxylate 7b: δH (400MHz; DMSO-d6) 13.57 (1H, brs), 8.53 (1H, brs), 8.42 (1H, d, J 6), 7.63 (1H, t, J 7), 7.25 (1H, d, J 6), 4.23 (2H, q, J 6), 2.16 (3H, s), 1.28 (3H, t, J 6); δC (100MHz; DMSO-d6) 178.6, 169.2, 164.7, 144.9, 141.6, 140.7, 133.9, 114.3, 113.4, 112.7, 111, 60.3, 25.8, 15; m/z (EI) 275.1032 (M+H+ for C13H9N2O4 requires 275.1034). Ethyl-7-(benzoylamino)-4-oxo-1,4-dihydroquinoline-3-carboxylate 7c: δH (400MHz; CDCl3) 14.48 (1H, brs), 11.99 (1H, brs), 8.86 (1H, d, J 8.5), 8.43 (1H, d, J 7), 8.17-8.10 (2H, m), 7.59-7.27 (5H, m), 4.33 (2H, q, J 7), 1.35 (3H, t, J 7); δC (100MHz; CDCl3) 178.5, 169.8, 164.5, 144.8, 141.6, 140.5, 134.5, 132, 130.4, 128.8, 127, 116.3, 114.2, 112.9, 111, 60.5, 14.5; m/z (EI) 337.1188 (M++H+ for C14H15N2O4 requires 337.1189). Ethyl-7-(anilinocarbonyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 7d: δH (500MHz; DMSO-d6) 13.19 (1H, brs), 10.63 (1H, brs), 8.97 (1H, brs), 8.64 (1H, brs), 8.47-7.17 (7H, m), 3.05-2.51 (2H, m), 1.29-1.28 (3H, m); δC (125MHz; DMSO-d6) 173.5, 165, 163, 146, 140.7, 139.2, 138, 129.2, 128.77, 126.5, 124.4, 123.5, 120.8, 118.9, 110.8, 60.2, 14.8; m/z (EI) 337.1188 (M++H+ for C16H16N2O4 requires 337.1191). Ethyl-7-[(benzylamino)carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylate 7e: δH (400MHz; DMSO-d6) 10.43 (1H, brs), 9.4 (1H, brs), 8.21 (1H, d, J 8.5), 8.42-7.87 (3H, m), 7.41-6.99 (5H, m), 4.51 (2H, d, J 6), 4.22 (2H, q, J 7), 1.28 (3H, t, J 7); δC (100MHz; DMSO-d6) 177, 166, 164, 157, 146, 145, 140.6, 139.7, 139.2, 138.3, 130.5, 128.9, 127.8, 123.9, 110, 60.1, 40.2, 14.8; m/z (EI) 351.1345 (M++H+ for C17H17N2O4 requires 351.1338). Ethyl7-cyano-4-oxo-1,4-dihydroquinoline-3-carboxylate 7f: δH (400MHz; CDCl3) 11.09 (1H, d, J 13), 8.46 (1H, d, J 13), 7.52-7.35 (3H, m), 4.32 (2H, q, J 7), 1.39 (3H, t, J 7); δC (100MHz; CDCl3) 175.7, 175.6, 150.6, 150.8, 127.9, 121.9, 119.8, 114, 110, 109.8, 106.7, 60.8, 14.3; m/z (EI) 241.0613 (M+H+ for C12H10N2O requires 241.0613). 4-Oxo-1,4-dihydroquinoline-3-carboxylic acid 8a: δH (400MHz; DMSO-d6) 13.43 (1H, brs), 8.91 (1H, d, J 6.5), 8.29 (1H, d, J 7), 7.91-7.81 (2H, m), 7.63-7.59 (1H, m), δC (100MHz; DMSO-d6) 179.2, 167.2, 146, 140.3, 134.8, 127, 125.9, 125.2, 120.5, 108.4; m/z (EI) 188.0348 (M+H+ for C10H14N2O requires 188.0348). 7-Amino-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 8b: δH (400MHz; DMSO-d6) 8.61 (2H, brs), 7.90 (1H, d, J 9), 7.47 (2H, brs), 7.41 (1H, d, J 8), 6.70 (1H, d, J 8), 6.57 (1H, d, J 8); δC (100MHz; DMSO-d6) 167.3, 154.9, 152, 145.5, 135.5, 127.3, 110.7, 110.2, 107.2, 104.3; m/z (EI) 203.0457 (M+H+ for C12H10N2O requires 203.0457). 7-(Benzoylamino)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 8c: δH (400MHz; DMSO-d6) 15.20 (1H, brs), 13.63 (1H, s), 8.62 (1H, s), 8.05-8.03 (1H, m), 7.89 (1H, m), 7.68-7.65 (1H, m), 7.53-7.39 (4H, m), 6.70 (1H, d, J 6.5), 6.57 (1H, d, J 6.5); δC (100MHz; DMSO-d6) 181.9, 166.8, 165.4, 151.7, 145, 141.5, 135, 132.8, 129.6, 127.5, 115, 110.2, 108.6,
106, 103.8; m/z (EI) 307.0719 (M’ - H’ for C₁₇H₁₁N₂O₄ requires 307.0711). 7-(Anilinocarbonyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 8d: δ H (500MHz; DMSO-d₆) 10.66 (1 H, brs), 9.01 (1 H, d, J 9), 8.36 (1 H, m), 8.32 (1 H, brs), 8.10-7.99 (1 H, m); 7.80 (1 H, d, J 7.5), 7.74 (1 H, d, J 7.5), 7.4 (1 H, d, J 8.5), 7.37 (1 H, d, J 8.5), 7.16 (1 H, m), δ C (125MHz; DMSO-d₆) 178.4, 166.8, 164.8, 146.9, 140, 139.2, 135.7, 129.2, 127.4, 126.6, 126.5, 126, 124.9, 122, 108.8; m/z (EI) 307.0719 (M’ - H’ for C₁₇H₁₁N₂O₄ requires 307.0719). 7-[(Benzylamino)carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 8e: δ H (400MHz; DMSO-d₆) 15.22 (1 H, s), 9.43 (1 H, t, J 6), 8.95 (1 H, s), 8.38-8.36 (m, 1H), 8.29-8.27 (1 H, m), 8.04-8.01 (1 H, m), 7.37-7.23 (6 H, m), 4.53 (2 H, d, J 6); δ C (100MHz; DMSO-d₆) 178.8, 167, 166, 140.2, 129.2, 128, 127.7, 126.8, 126.3, 125.9, 125.6, 124.8, 123.4, 122.5, 109, 43.7; m/z (EI) 321.0875 (M+ - H+ for C₁₈H₁₃N₂O₄ requires 321.0874). 7-Cyano-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 8f: δ H (400MHz; DMSO-d₆) 13.67 (1 H, brs), 8.99 (1 H, d, J 6), 8.39 (1 H, d, J 11), 8.10 (1 H, d, J 8), 8.06-7.98 (1 H, m); δ C (100MHz; DMSO-d₆) 178.4, 166.5, 146.6, 140.7, 135.0, 127.3, 126.2, 121.6, 118.3, 108.7; m/z (EI) 213.0300 (M’ - H’ for C₁₁H₅N₂O₃ requires 213.0302).

Molecular modelling

AutoDock 3.0⁵ was employed to perform the docking studies. The FIH structure,⁶⁻⁷ accession PDB-IB 1H2L FIH.Fe(II).2OG.HIF were used for all docking experiments. The substrate, cosubstrate, water molecules and sulphate ions were removed from the protein structure and the active site iron was retained. Kollman united atom charges and desolvation parameters were assigned using AutodockTools (ADT). The grid maps (box size 60 x 60 x 60 points and spacing 0.375 Å) include the entire active site of the enzyme and were generated using AutoGrid. Quantum mechanical calculations were performed to obtain the charge for Fe(II) (0.935) in the protein environment. Atomic solvation parameters and fragmental volumes for the protein were assigned using the AddSol utility of ADT. The 3D structures of the ligands were generated using ChemDraw Pro 8.0 and Chem3D Ultra 8.0 (CambridgeSoft) and minimized using the MOPAC feature within Chem 3D Ultra 8.0. Nonpolar hydrogens were removed and partial atomic charges were added using ADT. All rotatable bonds in the ligands were allowed and defined using AutoTors. Docking was conducted using the Lamarckian genetic algorithm with a population size 100, 10,000,000 generations, 10,000,000 energy evaluations and 10 docking runs.
Enzyme preparation and assay

The HIF-1α CAD substrate fragment (GST-HIF786-826) was expressed in *E. coli* as a fusion protein with glutathione S transferase. Synthetic CAD peptide, corresponding to HIF-1α residues 788-822 was purchased from Peptide Protein Research Ltd. (Fareham, UK). FIH and N-terminally truncated PHD2 were expressed in *E. coli* and purified as the His6 tagged enzyme. In all assays mentioned below, PHD2 was assayed in 50mM HEPES pH7.0 and FIH in 50mM Tris/HCl pH7.5. Screens of the test compounds were carried out using an assay dependent on a post-reaction derivatisation of 2OG with o-phenylenediamine. Each analogue was present in the reaction mixture at 1mM, with 1mM DTT, 0.6mg/ml catalase, then 4µM FIH + 50µM iron(II) + 500µM 2OG + 500µM CAD OR 4µM PHD2 + 50µM iron(II) + 300µM 2OG + 100µM HIF1α peptide. Incubation was at 37°C for 12 or 20 minutes for FIH and PHD2 respectively. Inhibition is reported as the difference in 2OG consumption in the presence and absence of test compound. Values are (at least) the mean of three independent measurements. IC50 values were determined by varying the concentration of the test compound from 0 – 1mM using the assay conditions above. Decay curves were drawn by hand onto the graphs and the IC50 estimated as the concentration at which the activity is half that in the absence of inhibitor.

ESI-Mass Spectrometry

Soft electrospray ionisation mass spectrometry (ESI-MS) was conducted using a Micromass (now Waters) Q-TOFmicro quadrupole-time of flight mass spectrometer. The standard Micromass source was replaced.
with an Advion BioSciences NanoMate™ chip-based nano-ESI source. Protein samples (10 µM) were sprayed from 10 mM NH₄OAc (pH 7.0) using a chip nozzle voltage of 1.70 kV, and a cone voltage of 80 V. Collisional cooling of ions was achieved by partially closing a valve on the rotary vacuum pump, leading to an increased pressure in the intermediate vacuum region of the mass spectrometer. CsI was used for calibration.

Figure S2. Soft ionisation MS analyses of (1) PHD2 and (2) PHD2 with addition of 10 µM 4a focussed on charge state 10: (a) Apo-PHD2 m/z = 2805.6, (b) PHD2.4a m/z = 2811.0; (c) PHD2.4a m/z = 2835.6.
Figure S3. Soft ionisation MS analyses of (1) FIH and (2) FIH with addition of 5 µM 4a (part dissolved in DMSO + NH₄OH) focused on charge state 18: (a) Metallo-FIH dimer $m/z = 4515.3$, (b) Metallo-FIH dimer $m/z = 4528.8$;

References

