Unprecedented 1,4-Stannatropy: Effective Generation of Azomethine Ylides as Nitrile Ylide Equivalents from N-(Stannylmethyl)thioamides

Mitsuo Komatsu*, Yukihiro Kasano, Jin-ichi Yonemori, Yoji Oderaotoshi, Satoshi Minakata

Prof. Dr. Mitsuo Komatsu
Department of Applied Chemistry and Center for Atomic and Molecular Technologies
Graduate School of Engineering, Osaka University
Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
Research Center for Environmental Preservation, Osaka University
Yamadaoka 2-4, Suita, Osaka, 565-0871, Japan
Fax: +81-6-6879-7403
E-mail: komatsu@chem.eng.osaka-u.ac.jp
Yukihiro Kasano, Jin-ichi Yonemori, Dr. Yoji Oderaotoshi, Dr. Satoshi Minakata
Department of Applied Chemistry, Graduate School of Engineering, Osaka University

General Methods: Melting points were determined on a Yanaco micro melting point apparatus and are uncorrected. IR spectra were obtained on a Jasco FT/IR-410 infrared spectrophotometer. 1H and 13C NMR spectra were recorded on a JEOL FT-NMR JNM EX 270 spectrometer (1H NMR, 270 MHz; 13C NMR, 68 MHz) using tetramethylsilane as an internal standard. Mass spectra and high-resolution mass spectral data were obtained on a JEOL DX-303 mass spectrometer. Products were purified by chromatography on silica gel 60 (Merck Co.), silica gel FL60D (Fuji Silysia
Experimental Procedure and Spectral Data

Preparation of N-(trimethylsilylmethyl)thiobenzamide (1b)

Lawesson reagent (0.210 g, 0.512 mmol) was added to a benzene solution (5 ml) of N-(trimethylsilylmethyl)benzamide¹ (1a) (0.184 g, 0.890 mmol), and the reaction mixture was refluxed for 6 h. The mixture was concentrated and purified by silica gel column chromatography (silica gel 60, Merck Co., eluent: hexane/ethyl acetate) to give thioamide 1b (0.161 g, 0.854 mmol, 96%). Thioamide 1b was confirmed by comparison of the spectral data with those reported in the reference.²

Preparation of N-(tributylstannylmethyl)thiobenzamide (1c)

n-Butyllithium (1.6 M hexane solution, 7.5 ml, 12 mmol) was added slowly to a THF solution (10 ml) of diisopropylamine (1.68 ml, 12 mmol) at -78 °C, and the solution was stirred for 40 min at the same temperature. Benzamide (1.66 g, 13.7 mmol) was added to the reaction mixture, and was stirred for 3 h at -78 °C.
Tributylstannylmethyl methanesulfonate\(^1\) (4.8 g, 12 mmol) was added slowly to the reaction mixture, and was stirred overnight at room temperature. After the reaction was quenched with water (20 ml), the organic solvent was removed from the reaction mixture under reduced pressure. The residue and aqueous layer were extracted with hexane (10 ml x 3), and the combined organic layer was dried over anhydrous MgSO\(_4\) and concentrated. The residue was purified by silica gel column chromatography (silica gel 60, Merck Co., eluent: hexane/ethyl acetate) to give \(N\)-(tributylstannylmethyl)benzamide (4.48 g, 10.6 mmol, 88%).

Lawesson reagent (2.43 g, 6 mmol) was added to a benzene solution (50 ml) of the benzamide (5.53 g, 13 mmol), and was heated at 60 °C for 10 min. The mixture was concentrated and purified by silica gel column chromatography (silica gel 60 [spherical, neutral], Nacalai Tesque Inc., eluent: hexane/ethyl acetate) and gel permeation column chromatography (JAIGEL-2H, JAI Co. Ltd., eluent: chloroform) to give thioamide \(1c\) (0.926 g, 2.1 mmol, 16%).

Amide: colourless oil; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.65-7.75 (m, 2H), 7.30-7.50 (m, 3H), 6.50-6.45 (br, 1H), 3.02 (d, \(J = 5.3\) Hz, \(^2\)\(J_{\text{H-Sn}} = 28.0\) Hz, 2H), 1.70-0.80 (m, 27H); \(^{13}\)C NMR (CDCl\(_3\)) 167.6, 135.0, 131.0, 128.5, 126.6, 45.1, 29.1, 27.4, 13.7, 10.2; IR (neat) 1628 cm\(^{-1}\); MS (Cl) \(m/z\) 426 (M\(^+\)+1, 11), 368 (100), 291 (3), 254 (2), 134 (5); HRMS (m/z, M\(^+\)) calcd. for C\(_{20}\)H\(_{36}\)NOSn: 426.1819, found: 426.1823.

Thioamide \(1c\): yellow oil; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 8.10-7.95 (br, 1H), 7.27-7.73 (m, 5H), 3.62 (d, \(J = 6.2\) Hz, \(^2\)\(J_{\text{H-Sn}} = 12.7\) Hz, 2H), 1.70-0.80 (m, 27H).

Preparation of \(N\)-methyl-\(N\)-(tributylstannylmethyl)thiobenzamide (1d)

Lawesson reagent (0.93 g, 2.3 mmol) was added to a benzene solution (15 ml)
of N-methyl-N-(tributylstannylmethyl)benzamide\(^3\) (2.00 g, 4.6 mmol), and was heated at 60 °C for 4 h. The mixture was concentrated and purified by silica gel column chromatography (silica gel 60 [spherical, neutral], Nacalai Tesque, eluent: hexane/ethyl acetate) and gel permeation column chromatography (JAIGEL-2H, JAI Co. Ltd., eluent: chloroform) to give thioamide 1d (1.04 g, 2.3 mmol, 50%).

Thioamide 1d: yellow oil: \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.32-7.25 (m, 5H), 3.82 (s, \(^2\)J\(_{\text{H-Sn}}\) = 13.5 Hz, 2H), 3.17 (s, 3H), 1.70-0.80 (m, 27H); \(^{13}\)C NMR (CDCl\(_3\)) 193.2, 143.1, 128.1, 128.0, 126.0, 46.0, 44.2, 29.0, 27.4, 13.7, 11.3.

Preparation of N-(tributylstannylmethyl)thioisobutyramide (1e)

Thioamide 1e was synthesized by the same procedure as that for thioamide 1c [N-(tributylstannylmethyl)isobutyramide: 53% yield, thioamide 1e: 20% yield].

Amide: colourless oil; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 5.70-5.60 (br, 1H), 2.80 (d, \(J = 5.0\) Hz, \(^2\)J\(_{\text{H-Sn}}\) = 14.5 Hz, 2H), 2.53 (sep, \(J = 6.9\) Hz, 1H), 1.58-1.23 (m, 18H), 1.13 (d, \(J = 6.9\) Hz, 6H), 0.89 (t, \(J = 7.0\) Hz, 9H); \(^{13}\)C NMR (CDCl\(_3\)) 176.6, 35.5, 29.0, 27.3, 24.1, 19.7, 13.6, 10.0; IR (neat) 1630 cm\(^{-1}\).

Thioamide 1e: yellow oil; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.65-7.55 (br, 1H), 3.40 (d, \(J = 6.2\) Hz, \(^2\)J\(_{\text{H-Sn}}\) = 13.4 Hz, 2H), 2.78 (sep, \(J = 7.0\) Hz, 1H), 0.80-1.60 (m, 18H), 1.13 (d, \(J = 7.0\) Hz, 6H), 0.89 (t, \(J = 7.0\) Hz, 9H); \(^{13}\)C NMR (CDCl\(_3\)) 205.2, 43.9, 33.9, 29.2, 27.5, 22.8, 13.8, 11.2.

Preparation of N-(tributylstannylmethyl)thioformamide (1f)

\(n\)-Butyllithium (1.6M hexane solution, 7.5 ml, 12 mmol) was slowly added to a THF solution (30 ml) of formamide (0.44 ml, 11 mmol) at -78 °C, and was stirred for 1
h at -78 °C. A DMF solution (30 ml) of tributylstannylmethyl methanesulfonate (4.0 g, 10 mmol) was added to the THF solution, and the mixture was warmed to room temperature and stirred for 12 h. After the reaction was quenched with water (50 ml), the mixture was extracted with hexane (50 ml x 4), and the combined organic layer was dried over anhydrous potassium carbonate and concentrated. The residue was purified by silica gel column chromatography (silica gel 60, Merck Co., eluent: hexane/ethyl acetate) to give N-(tributylstannylmethyl)formamide (1.96 g, 5.6 mmol, 56%).

Lawesson reagent (1.1 g, 2.8 mmol) was added to a THF solution (60 ml) of the formamide (1.96 g, 5.6 mmol), and was stirred at room temperature for 10 min. The solution was concentrated and purified by silica gel column chromatography (silica gel 60 [spherical, neutral, Nacalai Tesque Inc.] dried in an oven at 200 °C under reduced pressure, eluent: hexane/ethyl acetate) to give thioamide 1f (1.53 g, 4.2 mmol, 75%).

Amide: colourless oil; 1H NMR (CDCl$_3$) δ 8.11 (s, 1H), 5.58 (brs, 1H), 2.87 (d, $J = 5.5$ Hz, 2J$_{H-Sn}$ = 14.0 Hz, 2H), 1.60-0.80 (m, 27H); 13C NMR (CDCl$_3$) 160.9, 29.0, 27.4, 22.6, 13.7, 10.0.

Thioamide 1f: pale yellow oil; 1H NMR (CDCl$_3$) δ 9.18 (s, 1H), 7.71 (brs, 1H), 3.48 (dd, $J = 6.2$, and 0.8 Hz, 2J$_{H-Sn}$ = 13.4 Hz, 2H), 1.60-0.80 (m, 27H); 13C NMR (CDCl$_3$) 183.5, 31.8, 29.0, 27.4, 13.7, 11.0.

Preparation of N-methyl-N-(tributylstannylmethyl)thioformamide (1g)

Thioamide 1g was synthesized by the same procedure as that for thioamide 1f [N-methyl-N-(tributylstannylmethyl)formamide: 63% yield, thioamide 1g: 52% yield].

Amide: colourless oil; 1H NMR (CDCl$_3$) δ 7.93 (s, 1H), 2.94 (s, 3H), 2.86 (s, 2J$_{H-Sn}$ = 14.2 Hz, 2H), 1.55-0.80 (m, 27H); 13C NMR (CDCl$_3$) 160.9, 37.9, 30.5, 29.0, 27.3, 13.6,
Thioamide 1g: colourless oil; 1H NMR (CDCl$_3$) δ 8.90 (s, 1H), 3.54 (s, 2JH-Sn = 13.8 Hz, 2H), 3.29 (s, 3H), 1.70-0.80 (m, 27H); 13C NMR (CDCl$_3$) 180.8, 37.9, 30.5, 29.0, 27.3, 13.6, 10.4.

General procedure for cycloaddition of α-metalloamides or α-metallothioamides with dipolarophiles

A benzene solution (0.5 ml) of a dipolarophile (0.18 mmol) was added to a α-metallothioamide (0.06 mmol) and mesitylene (2.6 mg, 0.022 mmol), an internal standard, in a reaction tube, which was then sealed. The solution was heated to reaction temperature until the reaction was finished, and the mixture was purified by silica gel column chromatography (Fuji Silysia, FL-60D [spherical], eluent: hexane/ethyl acetate) to give the corresponding cycloadduct.

Cycloadducts 3a2, 3c4, 4a2, 4b5, 4g6, 5a2, 5b5, and 5c7 were confirmed by comparison of their NMR and mass spectral data with those reported in the references.

6,8-Dioxo-2-phenyl-3,7-diazabicyclo[3.3.0]octa-2-ene (3b): colourless solid; mp 116-119 °C; 1H NMR (CDCl$_3$) δ 8.25 (dd, J = 7.8 and 1.6 Hz, 2H), 7.57-7.30 (m, 8H), 4.81 (dt, J = 8.8 and 2.2 Hz, 1H), 4.66 (dd, J = 6.3 and 2.2 Hz, 2H), 3.93 (dt, J = 8.8 and 6.3 Hz, 1H); 13C NMR (CDCl$_3$) 176.9, 172.2, 166.5, 131.8, 131.4, 129.2, 129.0, 128.7, 128.4, 126.3, 63.6, 56.0, 44.6; IR (neat) 1710, 1497, 1384, 1196 cm$^{-1}$; MS (EI) m/z 290 (M$^+$, 22), 143 (11), 117 (100), 68 (22).

trans-3,4-Bis(methoxycarbonyl)-1-pyrroline (3d): colourless oil; 1H NMR (CDCl$_3$) δ
7.33 (d, J = 3.2 Hz, 1H), 4.00-3.60 (m, 4H), 3.74 (s, 3H), 3.67 (s, 3H).

3,4-Dicyano-1-methyl-2-phenyl-2-pyrroline (4c): colourless solid; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.55-7.35 (m, 5H), 4.08 (dd, \(J = 11.1\) and 7.3 Hz, 1H), 3.91 (t, \(J = 11.1\) Hz, 1H), 3.83 (dd, \(J = 11.1\) and 7.3 Hz, 1H), 2.77 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) 167.2, 131.1, 129.0, 128.1, 127.6, 118.5, 117.4, 74.1, 57.7, 36.1 31.5; IR (neat) 1710, 1497, 1384, 1196 cm\(^{-1}\); MS (EI) \(m/z\) 209 (M\(^+\), 95), 182 (100), 140 (23), 118 (60), 70 (19); HRMS (m/z, M\(^+\)) calcd. for C\(_{13}\)H\(_{11}\)N\(_3\): 209.0953, found: 209.0943.

3-Methoxycarbonyl-1-methyl-2-phenyl-2-pyrroline (4d): colourless solid; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.45-7.20 (m, 5H), 3.49 (s, 3H), 3.49 (t, \(J = 10.5\) Hz, 2H), 2.88 (t, \(J = 10.5\) Hz, 2H), 2.06 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\)) 166.7, 132.3, 130.6, 128.6, 128.4, 127.9, 127.8, 54.1, 50.2, 35.8, 28.1.

3,4-Dicyano-2-isopropyl-2-pyrroline (4e): colourless solid; \(^1\)H NMR (C\(_6\)D\(_6\)) \(\delta\) 3.10-3.00 (br, 1H), 3.05 (dd, \(J = 11.4\) and 6.4 Hz, 1H), 2.87 (ddd, \(J = 10.4\), 6.4, and 1.4 Hz, 1H), 2.57 (ddd, \(J = 11.4\), 10.4, and 1.4 Hz, 1H), 2.42 (sep, \(J = 7.0\) Hz, 1H), 0.74 (d, \(J = 7.0\) Hz, 3H), 0.78 (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (CDCl\(_3\)) 173.9, 118.7, 116.9, 71.4, 50.2, 32.5, 27.9, 20.3, 20.2; MS (EI) \(m/z\) 161 (M\(^+\), 48), 146 (25), 144 (22), 83 (100), 41 (36); HRMS (m/z, M\(^+\)) calcd. for C\(_9\)H\(_{11}\)N\(_3\): 161.0953, found: 161.0953.

3,4-Dicyano-2-pyrroline (4f): dark brown solid; \(^1\)H NMR (C\(_6\)D\(_6\)) \(\delta\) 5.75 (d, \(J = 3.2\) Hz, 1H), 2.83 (ddd, \(J = 11.6\), 6.5, and 1.4 Hz, 1H), 2.66 (ddd, \(J = 10.6\), 6.5, and 1.4 Hz, 1H), 2.53 (brdt, \(J = 3.2\) and 1.4 Hz, 1H), 2.35 (dd, \(J = 11.6\) and 10.6 Hz, 1H).
3,4-Dicyano-1-methyl-2-pyrroline (4h): light brown solid; 1H NMR (C$_6$D$_6$) δ 5.48 (s, 1H), 2.98 (dd, $J = 11.6$ and 6.7 Hz, 1H), 2.55 (dd, $J = 10.8$ and 6.7 Hz, 1H), 2.18 (dd, $J = 11.6$ and 10.8 Hz, 1H), 1.63 (s, 3H); 13C NMR (CDCl$_3$) 155.4, 118.1, 116.5, 73.9, 56.8, 36.8, 32.7.