Electronic Supplementary Information for

Highly Active Heterogeneous Fenton Catalyst Using Iron Oxide Nanoparticle Immbilized in Aluminum Coated Mesoporous Silica

Hacgyu Lim, a Jinwoo Lee, b Sunmi Jin, b Jaeyun Kim, b Jeyong Yoon a* and Taegwhan Hyeon b*

a School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-744, Korea. E-mail: jeyong@snu.ac.kr
b National Creative Research Initiative Center for Oxide Nanocrystalline Materials and School of Chemical Engineering, Seoul National University, Seoul 151-744, Korea.
Fax: 82-2-886-8457; Tel: 82-2-880-7150; E-mail: thyeon@plaza.snu.ac.kr

Fig. S1 Degradation of pCBA with (■) hematite, (□) magnetite, (●) FeSi, and (○) FeAlSi

The pCBA degradation experiments for Fig. S1 and S2 were conducted at 25 °C in the presence of 0.1 g/l of catalyst particles. The initial concentration of H₂O₂ was 5 mM. The solution pH was adjusted to 4.1 and kept within 0.2 pH units of this value with HClO₄ and NaOH during the experiments.
When the alumina content was low (Si/Al=8), the increasing Fe content from 3 to 24 wt % hardly affected the degradation rate for \(p\text{CBA} \). Considering the \(\text{H}_2\text{O}_2 \) decomposition result in Table 1, this data seems to support the effect of the association of alumina with iron oxide.