Novel butterfly pyrene based organic semiconductors for field effect transistors

Hengjun Zhang,a Ying Wang,a Kuizhan Shao,b Yunqi Liu,*a Wenfeng Qiu,a Xiaobo Sun,a Ting Qi,a Yongqiang Ma,a Gui Yu,a Zhongmin Su*b and Daoben Zhu*a

a Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

b Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China

Materials.

All reagents were purchased from Aldrich and used as received.

Instrumentation.

1H NMR spectra were obtained on a Bruker DMX 400 NMR Spectrometer. The signals have been designated as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), and m (multiplet).

1H chemical shifts are reported in ppm downfield from tetramethylsilane (TMS) reference using the residual protonated solvent resonance as an internal standard. MS spectra (MALDI-TOF-MS) were determined on a Bruker BIFLEX III Mass Spectrometer. Elemental analyses were carried out on a Carlo-Erba 1160 elemental analyzer. Differential scanning calorimetry measurements was done on DSC instruments Q100 DSC with a heating rate of 10 °C/min under flowing N₂ from room temperature to 400 °C. Thermogravimetric analysis of the molecules was conducted on a TA Instruments SDT2960 TGA. A heating rate of 10 °C/min under flowing N₂ was used with runs being conducted from room temperature to 600 °C. Cyclic voltammetric measurements were carried out in a conventional three-electrode cell using Pt button working electrodes of 2 mm diameter, a platinum wire counter electrode, and a Ag/AgCl reference electrode on a computer-controlled EG&G Potentiostat/Galvanostat model 283 at room temperature.
Synthetic Details.

1, 3, 6, 8-Tetrakis (4-trifluoromethylphenyl)pyrene (1). A mixture of 4-trifluoromethylphenylboronic acid (1.14 g, 6 mmol, 6 equiv), 1, 3, 6, 8-tetrabromopyrene (0.5 g, 1 mmol), palladium tetrakistriphenylphosphine (0.02 g, 1.6% mol), and potassium carbonate (1.2 g, 8 mmol) in dry dioxane (15 mL) was stirred under nitrogen for 24 h at 85 °C. The resulting mixture was cooled and poured into a solution of ice with concentrated hydrochloric acid (3:1) and the organic phase was extracted twice with dichloromethane, dried over magnesium sulfate. After evaporation of the solvent, the product was recrystallized from ethyl acetate/ethanol to give 0.58 g (75%) of 1 as a light green solid. Data for 1: 1H NMR (C$_6$D$_6$, 300 MHz): δ = 8.05 (s, 4H, pyrene-H), 7.82 (s, 2H, pyrene-H), 7.65 (d, $J = 8.0$ Hz, 8H, phenyl), 7.45 (d, $J = 8.0$ Hz, 8H, phenyl); MS (MALDI-TOF): m/z (M$^+$) 778; Elemental analysis (%): calcd. for C$_{44}$H$_{22}$F$_{12}$, C 67.87, H 2.85; found: C 67.81, H 2.94.

1, 3, 6, 8-Tetrakis (2-thiophene) pyrene (2). A mixture of 2-thiopheneboronic acid (1.54 g, 12.0 mmol, 6 equiv), 1, 3, 6, 8-tetrabromopyrene (1.04 g, 2 mmol), palladium tetrakistriphenylphosphine (0.04 g, 1.6% mol), and potassium carbonate (2.4 g, 16 mmol) in dry dioxane (20 mL) was stirred under nitrogen for 24 h at 85 °C. The resulting mixture was cooled and poured into a solution of ice with concentrated hydrochloric acid (3:1) and the organic phase was extracted twice with dichloromethane, dried over magnesium sulfate. After evaporation of the solvent, the product was recrystallized from dichloromethane/ethanol to give 0.82 g (77%) of 2 as a light yellow solid. Data for 2: 1H NMR (CDCl$_3$, 400 MHz): δ = 8.52 (s, 4H, pyrene-H), 8.24 (s, 2H, pyrene-H), 7.53 (d, $J = 5.1$ Hz, 4H, thiophene), 7.41 (d, $J = 3.5$ Hz, 4H, thiophene), 7.24–7.27 (m, 4H, thiophene); MS (MALDI-TOF): m/z (M$^+$) 530.2; Elemental analysis (%): calcd. for C$_{32}$H$_{18}$S$_4$, C 72.42, H 3.42; found: C 72.30, H 3.44.
Fig. S1 Cyclic voltammograms of 1 (a) and 2 (b). Conditions: 0.1 M \((n\text{-Bu})_4\text{NPF}_6\) in dichloromethane; working electrode, Pt disk (2 mm diameter); counter electrode, Pt wire; reference electrode, Ag/AgCl.
Fig. S2 a) Crystal packing view of 1 along b-axis. b) Crystal packing view of 2 along a-axis.