Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

Supplementary figure captions (listed)

Figure S1 Transmission electron microscope image of sample HA(300), hydroxyapatite nanoparticles made using a supercritical water feed at 300°C and 24 MPa in the hydrothermal flow system

Figure S2 Transmission electron microscope image of sample CDHA(200), made using a supercritical water feed at 200°C and 24 MPa in the hydrothermal flow system

Figure S3 Xray diffraction pattern of sample CDHA(200) made in the continuous hydrothermal synthesis system under basic conditions using a Ca:P ratio of 1.67, and then heat-treated in air at 800°C for 2 hours.

Figure S4 FTIR data for the range; (a) 4000-2800 cm⁻¹ and (b) 1800-400 cm⁻¹ for HA powders made in a hydrothermal flow system using superheated water at 24 MPa for samples (i) HA(400), (ii) HA(300) and (iii) CDHA(200), respectively.

Figure S5 Simultaneous thermal analysis data in the range 30 - 1200 °C for hydroxyapatite sample HA(400) made using a supercritical water feed at 400°C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67.

Figure S6 Simultaneous thermal analysis data in the range 30 - 1200 °C for hydroxyapatite sample HA(300) made using a supercritical water feed at 300°C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67

Figure S7 Simultaneous thermal analysis data in the range 30 – 1200 °C for the calcium deficient apatite sample CDHA(200) made using a supercritical water feed at 200 °C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67

Figure S8 Simultaneous thermal analysis data in the range 30 - 1200 °C for the calcium deficient apatite sample CDHA(400) made using a supercritical water feed at 400 °C and 24 MPa in the hydrothermal flow system under acidic conditions using a Ca:P ratio of 1.0

Figure S1 Transmission electron microscope image of sample HA(300), hydroxyapatite nanoparticles made using a supercritical water feed at 300°C and 24 MPa in the hydrothermal flow system (bar = 100nm).

Figure S2 Transmission electron microscope image of sample CDHA(200), made using a supercritical water feed at 200° C and 24 MPa in the hydrothermal flow system (bar = 100nm).

Figure S3 Xray diffraction pattern of sample CDHA(200) made in the continuous hydrothermal synthesis system under basic conditions using a Ca:P ratio of 1.67, and then heat-treated in air at 800°C for 2 hours.

Figure S4 FTIR data for the range; (a) 4000-2800 cm⁻¹ and (b) 1800-400 cm⁻¹ for HA powders made in a hydrothermal flow system using superheated water at 24 MPa for samples (i) HA(400), (ii) HA(300) and (iii) CDHA(200), respectively.

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

Figure S5 Simultaneous thermal analysis data in the range 30 – 1200 °C for hydroxyapatite sample HA(400) made using a supercritical water feed at 400°C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67.

Figure S6 Simultaneous thermal analysis data in the range 30 – 1200 °C for hydroxyapatite sample HA(300) made using a supercritical water feed at 300°C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67.

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

Figure S7 Simultaneous thermal analysis data in the range 30 - 1200 °C for the calcium deficient apatite sample CDHA(200) made using a supercritical water feed at 200 °C and 24 MPa in the hydrothermal flow system under basic conditions using a Ca:P ratio of 1.67.

Figure S8 Simultaneous thermal analysis data in the range 30 - 1200 °C for the calcium deficient apatite sample CDHA(400) made using a supercritical water feed at 400 °C and 24 MPa in the hydrothermal flow system under acidic conditions using a Ca:P ratio of 1:1.

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is (c) The Royal Society of Chemistry 2006

Previous reports suggest that under acidic conditions (hydrothermal batch/120 °C) monetite (CaHPO4) is initially formed.31 This is known to transform into an apatite structure if the temperature >140 °C. Despite our short reaction (or residence times), unsurprisingly, we obtained an apatite structure for CDHA(400) (albeit a calcium deficient one). In contrast, under basic conditions, an initial poorly crystalline (calcium deficient) apatite was probably formed at the "Tee" mixing point (before the reactor nozzle); this would have rapidly transformed into stoichiometric apatite by the reaction with superheated water at a temperature of 300 °C or higher. Evidently, at 200 °C (basic pH), the reaction kinetics did not allow transformation into stoichiometric apatite in our flow system for sample CDHA(200).