Supporting Information

Selective Encapsulation and Controlled Diastereoselectivity at Alkene-Geometry: E-Z Photoisomerization of Oxazolidinone-Functionalized Enecarbamates within Hydrophobic Nano-Cavities

Hideaki Saito,†‡ J. Sivaguru,† Steffen Jockusch,† Joanne Dyer,† Yoshihisa Inoue,†‡§ Waldemar Adam,# and Nicholas J. Turro*,†Ψ

†The Department of Chemistry, Columbia University, 3000 Broadway, Mail Code 3119, New York, NY 10027.
‡The Department of Molecular Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
§Entropy Control Project, ICORP, JST, 4-6-3 Kamishinden, Toyonaka 560-0085, Japan
#Institute für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany,
and the Department of Chemistry, University of Puerto Rico, Rio Piedras, PR 00931
ΨThe Department of Chemical Engineering, Columbia University, 3000 Broadway, Mail Code 3119, New York, NY 10027.

E-mail: njt3@columbia.edu
Contents:

1) Materials and Methods

2) Complexation of Z-enecarbamates (1Z) with γ-Cyclodextrin:
 a) In D$_2$O/CD$_3$OD
 b) In Solid State

3) CD spectra of various cyclodextrin-complexes.

4) Photoreactions
 a) In D$_2$O/CD$_3$OD
 b) In Solid State

5) Gas Chromatographic characterization of 1E.

6) NMR characterization.

7) Phosphorescence lifetime measurements.
1) Materials and Methods: Deuterated solvents obtained from Cambridge Isotope Labs were used as received. The Z- and E-enecarbamates were synthesized as previously described.S1 γ-Cyclodextrin was purchased from Aldrich and used as received. Product ratios and diastereoselectivities were determined by 1H NMR (300MHz, Bruker). The DRIFTS spectra were recorded using a ThermoNicolet Nexos870FT-IR fitted with a DRIFTS accessory (Smart Collector). Steady-state luminescence spectra were recorded on a SPEX Fluorolog-3 spectrometer FL3-22 (J. Y. Horiba, Edison, NJ) at 77 K using 3 mm suprasil quartz tubes in conjunction with a liquid nitrogen dewar. Time-resolved phosphorescence measurements were performed by multi-channel scaling on an OB900 fluorimeter (Edinburgh Analytical Instruments) using a pulsed xenon lamp μF 900 for excitation.

2) Complexation of Z-enecarbamates (1Z) with γ-Cyclodextrin:

Figure S1: Complexation of Z-enecarbamates (1Z) with γ-Cyclodextrin in 1:1 D$_2$O/CD$_3$OD.
a) In D$_2$O/CD$_3$OD:

4 mL of D$_2$O was added to a 25 mL standard flask with 0.03 mmol of γ-Cyclodextrin. 1Z (0.03 mmol) was dissolved separately in a test tube in 1 mL of CD$_3$OD and added to the standard flask (Figure S1). A white precipitate formed immediately (Figure S1) and the precipitate was then dissolved in a mixture of 8.5 mL D$_2$O and 11.5 mL CD$_3$OD to give a clear solution of γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD.

![Figure S2: Complexation of Z-enecarbamates (1Z) with γ-Cyclodextrin with Ether/Water for solid-state studies.](image)

b) In Solid State:

The complexation of γ-CD and 1Z was achieved by adding 1Z (1.5 x 10^{-5} mol) in 5 mL ether to 1.5 x 10^{-4} mol of γ-CD in 10 mL deionized water, that gave a white precipitate of γ-CD/1Z complex (Figure S2). This complex was labeled 10:1 based on the starting molar ratio. Similarly a 20:1 γ-CD/1Z complex was prepared. The complexes thus prepared were filtered and washed thoroughly with ether. The residue was dried by vacuum overnight.
Figure S3: Z-enecarbamates (1Z) crashes out from water without cyclodextrin in 1:1 D$_2$O / CD$_3$OD (center); but is completely soluble in CD$_3$OD (left) and in the presence of γ-Cyclodextrin in 1:1 D$_2$O / CD$_3$OD (right).
3) Circular Dichroism Spectra of Z-enecarbamates with γ-Cyclodextrin:

Figure S4: Circular dichroism spectra of 1Z with/without CDs; [1Z] = 5.7 x 10^{-5} M (blue), [1Z] = [γ-CD] = 4.8 x 10^{-5} M (green), and [1Z] = [β-CD] = 3.5 x 10^{-5} M (red).

4) Photoreactions

a) In D$_2$O/CD$_3$OD:

The γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD was placed into a quartz cell and then irradiated using an excimer laser at 308 nm; 20 Hz, 100 mJ/Pulse (2 Watts). The complex was then analyzed by 1H-NMR spectroscopy and then by Gas chromatography.

b) Solid State:

Irradiations in solid state were performed with the well-grounded samples sandwiched between two quartz plates for the specified time intervals (Figure S5). The
complex was then dissolved in water and extracted (5 x 5 mL) with dichloromethane and dried over MgSO₄. The dichloromethane layer was concentrated and then submitted to 1H-NMR spectroscopy (CD$_3$CN as solvent) followed by Gas chromatographic analysis.

Figure S5: Samples for solid-state irradiation. The γ-Cyclodextrin-1Z complex sandwiched between quartz plates were irradiated within a Rayonet reactor at 254 nm.
5) Gas Chromatographic analysis

Figure S6: Gas Chromatographic analysis showing the diastereomeric E-enecarbamate peaks upon irradiation of the γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD.
6) NMR Characterization

Figure S7: 1H-NMR spectroscopy of a) 1Z in CD$_3$OD (Blue); (b) γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD before irradiation - Note the shift in the peaks (Red); (c) γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD after irradiation - Note the formation of 1E (Green).
7) Phosphorescence life time measurements

Figure S8: Phosphorescence lifetime measurements multi canal scaling of at 77 K 1Z in ethanol glass (top) and γ-CD/1Z complex in 1:1 v/v of D$_2$O/CD$_3$OD (bottom) ($\lambda_{ex} = 260$ nm; $\lambda_{em} = 390$ nm).

References
