# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2006 data_global _journal_name_full Chem.Commun. # SUBMISSION DETAILS _journal_coden_Cambridge 0182 _publ_contact_author_name 'Naumov, Pance' _publ_contact_author_address ; ICYS National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan ; _publ_contact_author_email naumov.pance@nims.go.jp _publ_contact_author_fax +81-(0)29-860-4706 _publ_contact_author_phone '+81-(0)29-851-3354 (8572)' _publ_requested_category communication _publ_contact_letter ; #====================================================================== # TITLE AND AUTHOR LIST ; _publ_section_title ; Increased crystal porosity and enhanced gas adsorption by intracolumnar gliding for broadband gas detection ; # The loop structure below should contain the names and addresses of all # authors, in the required order of publication. Repeat as necessary. loop_ _publ_author_name _publ_author_address P.Naumov ; ICYS National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan Institute of Chemistry Faculty of Science Sts. Cyril and Methodius University POB 162 MK-1000 Skopje Macedonia ; K.Sakurai ; X-ray Physics Laboratory Quantum Beam Center National Institute for Materials Science 1-2-1 Sengen, Tsukuba Ibaraki 305-0047 Japan ; A.Nukui ; ICYS National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan ; M.Tanaka ; WEBRAM, SPring-8 National Institute for Materials Science 1-1-1 Kouto, Mikazuki-cho Sayo-gun, Hyogo 679-5198 Japan ; #====================================================================== # TEXT _publ_section_synopsis ; A new three-level structural approach based on anion-induced intracolumnar gliding of stacked coordinationally unsaturated units is described for design of metal-organic crystals which exhibit concentration- and gas-specific adsorption of a variety of small molecules and could be employed for multiple and rapid qualitative and quantitative broadband detection of gases or gaseous mixtures. ; _publ_section_abstract ; A new approach is described for structural design of inexpensive crystalline metal-organic materials able for solid-gas adsorption of small molecules with concentration- and gas-specific color change, which can be employed for multiple and rapid broadband detection and quantitative measurement of gases and gas mixtures. The strategy is based on off-axis gliding of stacked, coordinationally unsaturated, square-planar metal centers spaced out by bulky asymmetric ligands of limited flexibility. The method is exemplified by preparation of crystalline bis(N,N-diethylethylenediamine)copper(II) nitrate, which can detect gaseous H2O, NH3, H2S, SO2 and NOx. Thermal recovery of the initial state of the material results in latent structural strain which is expressed as structural memory effect that can be erased completely by several thermal cycles. ; _publ_section_comment ; ; _publ_section_exptl_prep ; ; _publ_section_exptl_refinement ; ; _publ_section_references ; SIR92 - A program for crystal structure solution. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993) J. Appl. Cryst. 26, 343-350. Bruker (1995). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G.M. (1996). SADABS, University of G\"ottingen, Germany. Sheldrick, G. M. (1997). SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of G\"ottingen, Germany. Crystal Impact (2005). DIAMOND, Crystal and molecular structure visualization, Bonn, Germany. ; #====================================================================== data_CuNO-H2O-1 _database_code_depnum_ccdc_archive 'CCDC 616566' _audit_creation_method 'Manual editing of SHELXL-97' _chemical_name_systematic ; monoaquabis(N,N-diethylethylenediamine)copper(II) nitrate ; _chemical_name_common 'monoaquabis(N,N-diethylethylenediamine)copper(ii) nitrate' _chemical_melting_point ? _chemical_formula_moiety 'C12 H34 Cu N4 O, 2(N O3)' _chemical_formula_sum 'C12 H34 Cu N6 O7' _chemical_formula_weight 437.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 15.380(3) _cell_length_b 8.3331(17) _cell_length_c 16.350(3) _cell_angle_alpha 90.00 _cell_angle_beta 106.807(4) _cell_angle_gamma 90.00 _cell_volume 2005.9(7) _cell_formula_units_Z 4 _cell_measurement_temperature 200(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description plate _exptl_crystal_colour blue _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.21 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.450 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 932 _exptl_absorpt_coefficient_mu 1.134 _exptl_absorpt_correction_type sphere _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details 'SADABS (Sheldrick, 1996)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 200(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD diffractometer' _diffrn_measurement_method '\w scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 6807 _diffrn_reflns_av_R_equivalents 0.0301 _diffrn_reflns_av_sigmaI/netI 0.0289 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 19 _diffrn_reflns_theta_min 2.60 _diffrn_reflns_theta_max 25.00 _reflns_number_total 1754 _reflns_number_gt 1621 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1995)' _computing_cell_refinement 'SAINT (Bruker, 1995)' _computing_data_reduction 'SAINT (Bruker, 1995)' _computing_structure_solution 'SIR-92 (Altomare, 1992)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'DIAMOND (Crystal Impact, 2005)' _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1137P)^2^+7.0974P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1754 _refine_ls_number_parameters 123 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0717 _refine_ls_R_factor_gt 0.0675 _refine_ls_wR_factor_ref 0.1969 _refine_ls_wR_factor_gt 0.1939 _refine_ls_goodness_of_fit_ref 1.167 _refine_ls_restrained_S_all 1.167 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.5000 0.19679(9) 0.7500 0.0406(3) Uani 1 2 d S . . C1 C 0.5218(5) 0.1925(11) 0.5832(4) 0.084(2) Uani 1 1 d . . . C2 C 0.6129(4) 0.2321(8) 0.6378(4) 0.0597(14) Uani 1 1 d . . . C3 C 0.3622(6) 0.1769(11) 0.5692(5) 0.092(2) Uani 1 1 d . . . C4 C 0.3492(5) -0.0003(9) 0.5738(5) 0.082(2) Uani 1 1 d . . . C5 C 0.4426(6) 0.4274(10) 0.6058(6) 0.096(2) Uani 1 1 d . . . C6 C 0.3846(5) 0.5117(8) 0.6492(5) 0.0764(18) Uani 1 1 d . . . N1 N 0.4494(3) 0.2494(6) 0.6188(3) 0.0479(9) Uani 1 1 d . . . N2 N 0.6202(3) 0.1840(5) 0.7261(3) 0.0507(9) Uani 1 1 d . . . N3 N 0.6467(3) -0.2537(6) 0.6623(3) 0.0589(11) Uani 1 1 d . . . O1 O 0.5630(3) -0.2395(7) 0.6389(4) 0.0851(14) Uani 1 1 d . . . O2 O 0.6817(3) -0.3760(7) 0.6450(4) 0.0930(15) Uani 1 1 d . . . O3 O 0.6949(3) -0.1475(6) 0.7002(4) 0.0957(17) Uani 1 1 d . . . O4 O 0.5000 -0.0703(8) 0.7500 0.0836(19) Uani 1 2 d S . . H1A H 0.5168 0.0771 0.5757 0.101 Uiso 1 1 calc R . . H1B H 0.5132 0.2406 0.5275 0.101 Uiso 1 1 calc R . . H2A H 0.6601 0.2485 0.7625 0.061 Uiso 1 1 calc R . . H2B H 0.6413 0.0828 0.7348 0.061 Uiso 1 1 calc R . . H2C H 0.6236 0.3465 0.6355 0.072 Uiso 1 1 calc R . . H2D H 0.6582 0.1761 0.6180 0.072 Uiso 1 1 calc R . . H3A H 0.3529 0.2043 0.5098 0.111 Uiso 1 1 calc R . . H3B H 0.3143 0.2289 0.5870 0.111 Uiso 1 1 calc R . . H4 H 0.5408 -0.1031 0.7315 0.125 Uiso 0.50 1 calc PR . . H4A H 0.4023 -0.0549 0.5690 0.123 Uiso 1 1 calc R . . H4B H 0.2976 -0.0330 0.5282 0.123 Uiso 1 1 calc R . . H4C H 0.3392 -0.0269 0.6274 0.123 Uiso 1 1 calc R . . H5A H 0.5032 0.4725 0.6254 0.115 Uiso 1 1 calc R . . H5B H 0.4196 0.4486 0.5452 0.115 Uiso 1 1 calc R . . H6A H 0.3221 0.4879 0.6210 0.115 Uiso 1 1 calc R . . H6B H 0.3943 0.6253 0.6474 0.115 Uiso 1 1 calc R . . H6C H 0.3994 0.4770 0.7075 0.115 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0367(4) 0.0431(5) 0.0412(5) 0.000 0.0104(3) 0.000 C1 0.081(5) 0.113(6) 0.061(4) 0.006(4) 0.025(3) 0.006(4) C2 0.054(3) 0.071(4) 0.060(3) 0.005(3) 0.027(3) 0.007(2) C3 0.087(5) 0.120(7) 0.060(4) 0.009(4) 0.006(3) -0.020(4) C4 0.074(4) 0.084(5) 0.086(5) -0.036(4) 0.019(3) -0.017(3) C5 0.104(6) 0.088(5) 0.093(5) 0.025(4) 0.024(4) 0.011(4) C6 0.078(4) 0.054(3) 0.101(5) 0.007(3) 0.030(4) 0.012(3) N1 0.045(2) 0.056(2) 0.039(2) 0.0059(17) 0.0076(16) 0.0031(17) N2 0.0423(19) 0.058(3) 0.053(2) -0.0030(19) 0.0155(17) -0.0013(17) N3 0.048(2) 0.064(3) 0.065(3) 0.008(2) 0.018(2) 0.000(2) O1 0.053(2) 0.106(4) 0.094(4) -0.008(3) 0.018(2) 0.005(2) O2 0.085(3) 0.070(3) 0.126(4) -0.016(3) 0.032(3) 0.008(3) O3 0.059(2) 0.062(3) 0.158(5) -0.023(3) 0.018(3) -0.001(2) O4 0.098(5) 0.064(4) 0.095(5) 0.000 0.040(4) 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N2 2.003(4) 2_656 ? Cu1 N2 2.003(4) . ? Cu1 N1 2.111(4) 2_656 ? Cu1 N1 2.111(4) . ? Cu1 O4 2.226(7) . ? N2 C2 1.475(7) . ? N1 C1 1.478(8) . ? N1 C3 1.483(8) . ? N1 C5 1.498(9) . ? O1 N3 1.240(6) . ? N3 O3 1.206(7) . ? N3 O2 1.225(7) . ? C2 C1 1.468(9) . ? C4 C3 1.496(11) . ? C6 C5 1.473(10) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Cu1 N2 173.9(3) 2_656 . ? N2 Cu1 N1 84.32(17) 2_656 2_656 ? N2 Cu1 N1 96.96(17) . 2_656 ? N2 Cu1 N1 96.96(17) 2_656 . ? N2 Cu1 N1 84.32(17) . . ? N1 Cu1 N1 156.0(3) 2_656 . ? N2 Cu1 O4 86.95(13) 2_656 . ? N2 Cu1 O4 86.95(13) . . ? N1 Cu1 O4 101.99(13) 2_656 . ? N1 Cu1 O4 101.99(13) . . ? C2 N2 Cu1 111.4(3) . . ? C1 N1 C3 108.6(6) . . ? C1 N1 C5 106.9(5) . . ? C3 N1 C5 108.1(5) . . ? C1 N1 Cu1 103.8(3) . . ? C3 N1 Cu1 118.8(4) . . ? C5 N1 Cu1 109.9(4) . . ? O3 N3 O2 118.9(5) . . ? O3 N3 O1 121.3(6) . . ? O2 N3 O1 119.8(6) . . ? C1 C2 N2 109.0(5) . . ? C2 C1 N1 112.6(6) . . ? N1 C3 C4 119.2(7) . . ? C6 C5 N1 115.6(6) . . ? _diffrn_measured_fraction_theta_max 0.991 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.991 _refine_diff_density_max 1.477 _refine_diff_density_min -0.432 _refine_diff_density_rms 0.114 #============================================================================== #====================================================================== # CRYSTAL DATA #---------------------------------------------------------------------- data_RIETAN_phase_1 _database_code_depnum_ccdc_archive 'CCDC 616567' _pd_block_id ;bis(N,N-diethylethylenediamine)copper(II) nitrate monohydrate obtained from the red anhydrate exposed to moist air' ; _pd_phase_name CuNO_blue _cell_length_a 15.41781(56) _cell_length_b 8.33658(26) _cell_length_c 16.40034(59) _cell_angle_alpha 90.0 _cell_angle_beta 106.8322(21) _cell_angle_gamma 90.0 _cell_volume 2017.6(2) _cell_formula_units_Z 4 _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/c _symmetry_Int_Tables_number 15 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' loop_ _atom_site_label _atom_site_symmetry_multiplicity _atom_site_occupancy _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_thermal_displace_type _atom_site_B_iso_or_equiv _atom_site_type_symbol CU1 2 1.0 0.50000 0.19891 0.75000 Biso 5.187 Cu2+ C1 1 1.0 0.51852 0.15056 0.57547 Biso 9.888 C C2 1 1.0 0.60548 0.23662 0.62776 Biso 0.735 C C3 1 1.0 0.36555 0.19472 0.57452 Biso 7.681 C C4 1 1.0 0.34887 -0.00084 0.57316 Biso 0.846 C C5 1 1.0 0.44686 0.43649 0.61081 Biso 6.606 C C6 1 1.0 0.37701 0.51494 0.63919 Biso 3.493 C N1 1 1.0 0.45647 0.26514 0.60280 Biso 8.294 N N2 1 1.0 0.62993 0.19275 0.72184 Biso 1.907 N N3 1 1.0 0.65637 -0.25456 0.66506 Biso 10.692 N O1 1 1.0 0.56403 -0.24381 0.64322 Biso 9.756 O O2 1 1.0 0.67941 -0.39333 0.64287 Biso 12.062 O O3 1 1.0 0.69661 -0.13908 0.69618 Biso 9.970 O O4 2 1.0 0.50000 -0.07264 0.75000 Biso 9.214 O _chemical_name_common 'CuNO blue' data_redCUNO _database_code_depnum_ccdc_archive 'CCDC 622953' _audit_creation_method 'Manual editing of SHELXL-97' _chemical_name_systematic ; bis(N,N-diethylethylenediamine)copper(II) nitrate ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C12 H32 Cu N6 O6' _chemical_formula_sum 'C12 H32 Cu N6 O6' _chemical_formula_weight 419.98 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P21/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 8.1864(10) _cell_length_b 12.6438(16) _cell_length_c 9.6767(12) _cell_angle_alpha 90.00 _cell_angle_beta 105.942(2) _cell_angle_gamma 90.00 _cell_volume 963.1(2) _cell_formula_units_Z 2 _cell_measurement_temperature 200(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description prism _exptl_crystal_colour orange-red _exptl_crystal_size_max 0.275 _exptl_crystal_size_mid 0.100 _exptl_crystal_size_min 0.037 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.448 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 892 _exptl_absorpt_coefficient_mu 1.173 _exptl_absorpt_correction_type sphere _exptl_absorpt_correction_T_min 0.317 _exptl_absorpt_correction_T_max 0.442 _exptl_absorpt_process_details 'SADABS (Sheldrick, 1996)' _exptl_special_details ; The compound is sensitive to moisture and small-molecule gases. ; _diffrn_ambient_temperature 200(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD diffractometer' _diffrn_measurement_method '\w scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 10778 _diffrn_reflns_av_R_equivalents 0.0322 _diffrn_reflns_av_sigmaI/netI 0.0341 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 18 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.72 _diffrn_reflns_theta_max 30.70 _reflns_number_total 2797 _reflns_number_gt 2102 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1995)' _computing_cell_refinement 'SAINT (Bruker, 1995)' _computing_data_reduction 'SAINT (Bruker, 1995)' _computing_structure_solution 'SIR-92 (Altomare, 1992)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'DIAMOND (Crystal Impact, 2005)' _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0506P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2797 _refine_ls_number_parameters 117 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0454 _refine_ls_R_factor_gt 0.0297 _refine_ls_wR_factor_ref 0.0805 _refine_ls_wR_factor_gt 0.0734 _refine_ls_goodness_of_fit_ref 0.932 _refine_ls_restrained_S_all 0.932 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 1.0000 0.0000 1.0000 0.02245(9) Uani 1 2 d S . . C1 C 1.0259(2) 0.18666(12) 0.83540(17) 0.0291(3) Uani 1 1 d . . . C2 C 1.0725(2) 0.21697(13) 0.99183(18) 0.0330(4) Uani 1 1 d . . . C3 C 1.2237(2) 0.04197(15) 0.82414(18) 0.0310(3) Uani 1 1 d . . . C4 C 1.2793(2) 0.07662(16) 0.69428(19) 0.0399(4) Uani 1 1 d . . . C5 C 0.9217(2) 0.03140(13) 0.68690(16) 0.0283(3) Uani 1 1 d . . . C6 C 0.7434(2) 0.02037(14) 0.70355(19) 0.0357(4) Uani 1 1 d . . . N1 N 1.04502(15) 0.07014(10) 0.82165(13) 0.0242(3) Uani 1 1 d . . . N2 N 0.97449(18) 0.14750(10) 1.06300(14) 0.0284(3) Uani 1 1 d . . . N3 N 1.04729(18) 0.25151(11) 0.42482(15) 0.0317(3) Uani 1 1 d . . . O1 O 1.0806(2) 0.31757(11) 0.52290(15) 0.0551(4) Uani 1 1 d . . . O2 O 0.91044(16) 0.20328(10) 0.39305(15) 0.0442(3) Uani 1 1 d . . . O3 O 1.15431(16) 0.23235(11) 0.35769(14) 0.0453(3) Uani 1 1 d . . . H1A H 0.9071 0.2076 0.7886 0.035 Uiso 1 1 calc R . . H1B H 1.1007 0.2242 0.7867 0.035 Uiso 1 1 calc R . . H2A H 0.8618 0.1668 1.0370 0.034 Uiso 1 1 calc R . . H2B H 1.0156 0.1529 1.1613 0.034 Uiso 1 1 calc R . . H2C H 1.1959 0.2073 1.0357 0.040 Uiso 1 1 calc R . . H2D H 1.0437 0.2920 1.0024 0.040 Uiso 1 1 calc R . . H3A H 1.2365 -0.0358 0.8335 0.037 Uiso 1 1 calc R . . H3B H 1.3016 0.0739 0.9109 0.037 Uiso 1 1 calc R . . H4A H 1.2054 0.0441 0.6076 0.060 Uiso 1 1 calc R . . H4B H 1.3970 0.0544 0.7057 0.060 Uiso 1 1 calc R . . H4C H 1.2715 0.1538 0.6855 0.060 Uiso 1 1 calc R . . H5A H 0.9601 -0.0381 0.6606 0.034 Uiso 1 1 calc R . . H5B H 0.9197 0.0814 0.6078 0.034 Uiso 1 1 calc R . . H6A H 0.7423 -0.0347 0.7745 0.054 Uiso 1 1 calc R . . H6B H 0.6649 0.0010 0.6109 0.054 Uiso 1 1 calc R . . H6C H 0.7078 0.0878 0.7360 0.054 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.02506(14) 0.02167(14) 0.02213(13) -0.00050(10) 0.00903(9) -0.00075(10) C1 0.0340(8) 0.0236(8) 0.0324(8) 0.0024(6) 0.0134(6) 0.0000(6) C2 0.0413(9) 0.0241(8) 0.0355(8) -0.0034(6) 0.0139(7) -0.0058(7) C3 0.0258(8) 0.0346(8) 0.0345(8) 0.0019(7) 0.0114(6) 0.0030(7) C4 0.0338(9) 0.0502(11) 0.0417(9) -0.0012(8) 0.0204(7) -0.0022(8) C5 0.0288(8) 0.0313(8) 0.0251(7) -0.0016(6) 0.0081(6) -0.0005(6) C6 0.0266(8) 0.0428(11) 0.0363(9) -0.0024(7) 0.0062(7) 0.0001(7) N1 0.0250(6) 0.0245(6) 0.0250(6) -0.0006(5) 0.0099(5) -0.0002(5) N2 0.0364(7) 0.0262(7) 0.0252(6) -0.0013(5) 0.0125(5) -0.0004(6) N3 0.0361(7) 0.0262(7) 0.0314(7) 0.0028(5) 0.0067(6) 0.0018(6) O1 0.0687(10) 0.0448(8) 0.0457(8) -0.0176(6) 0.0051(7) 0.0031(7) O2 0.0313(6) 0.0381(7) 0.0645(9) 0.0001(6) 0.0153(6) -0.0023(5) O3 0.0423(7) 0.0514(8) 0.0490(8) -0.0051(6) 0.0241(6) -0.0096(6) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N2 1.9907(13) 3_757 ? Cu1 N2 1.9907(13) . ? Cu1 N1 2.0617(12) . ? Cu1 N1 2.0617(12) 3_757 ? O2 N3 1.2379(18) . ? N1 C1 1.491(2) . ? N1 C5 1.4955(19) . ? N1 C3 1.499(2) . ? O3 N3 1.2494(19) . ? O1 N3 1.2372(19) . ? N2 C2 1.481(2) . ? C3 C4 1.514(2) . ? C1 C2 1.505(2) . ? C5 C6 1.518(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Cu1 N2 180.0 3_757 . ? N2 Cu1 N1 95.09(5) 3_757 . ? N2 Cu1 N1 84.91(5) . . ? N2 Cu1 N1 84.91(5) 3_757 3_757 ? N2 Cu1 N1 95.09(5) . 3_757 ? N1 Cu1 N1 180.0 . 3_757 ? C1 N1 C5 109.83(12) . . ? C1 N1 C3 111.04(12) . . ? C5 N1 C3 111.00(12) . . ? C1 N1 Cu1 107.64(9) . . ? C5 N1 Cu1 110.84(9) . . ? C3 N1 Cu1 106.40(9) . . ? C2 N2 Cu1 107.31(9) . . ? O1 N3 O2 121.11(16) . . ? O1 N3 O3 119.46(16) . . ? O2 N3 O3 119.43(14) . . ? N1 C3 C4 115.61(13) . . ? N1 C1 C2 109.72(13) . . ? N1 C5 C6 112.09(13) . . ? N2 C2 C1 107.27(13) . . ? _diffrn_measured_fraction_theta_max 0.935 _diffrn_reflns_theta_full 30.70 _refine_diff_density_max 0.449 _refine_diff_density_min -0.389 _refine_diff_density_rms 0.077 #====================================================================== # TEXT _publ_section_synopsis ; A new three-level structural approach based on anion-induced intracolumnar gliding of stacked coordinationally unsaturated units is described for design of metal-organic crystals which exhibit concentration- and gas-specific adsorption of a variety of small molecules and could be employed for multiple and rapid qualitative and quantitative broadband detection of gases or gaseous mixtures. ; _publ_section_abstract ; A new approach is described for structural design of inexpensive crystalline metal-organic materials able for solid-gas adsorption of small molecules with concentration- and gas-specific color change, which can be employed for multiple and rapid broadband detection and quantitative measurement of gases and gas mixtures. The strategy is based on off-axis gliding of stacked, coordinationally unsaturated, square-planar metal centers spaced out by bulky asymmetric ligands of limited flexibility. The method is exemplified by preparation of crystalline bis(N,N-diethylethylenediamine)copper(II) nitrate, which can detect gaseous H2O, NH3, H2S, SO2 and NOx. Thermal recovery of the initial state of the material results in latent structural strain which is expressed as structural memory effect that can be erased completely by several thermal cycles. ; _publ_section_references ; SIR92 - A program for crystal structure solution. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993) J. Appl. Cryst. 26, 343-350. Bruker (1995). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G.M. (1996). SADABS, University of G\"ottingen, Germany. Sheldrick, G. M. (1997). SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of G\"ottingen, Germany. Crystal Impact (2005). DIAMOND, Crystal and molecular structure visualization, Bonn, Germany. ;