SUPPORTING INFORMATION

A simple asymmetric organocatalytic approach to optically active cyclohexenones

Armando Carlone, Mauro Marigo, Chris North, Aitor Landa and Karl Anker Jørgensen*

Danish National Research Foundation: Center for Catalysis
Department of Chemistry, Aarhus University
DK-8000 Aarhus C, Denmark
Fax (45) 8919 6199, e-mail: kaj@chem.au.dk

Contents

General Methods .. p 2
Materials .. p 2
Determination of Absolute Configuration .. p 2
Experimental Procedures and Characterizations ... p 3
General Methods. The 1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts (δ) for 1H and 13C are given in ppm relative to residual signals of the solvents (CHCl$_3$). Coupling constants (J) are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. Chromatography was carried out by flash chromatography (FC) using Merck silica gel 60 (230-400 mesh) according to the method of Still et al.1 Optical rotations were measured on a Perkin-Elmer 241 polarimeter and they are reported as follows: $[\alpha]_D^n$ (c in g per 100 mL, solvent).

Materials. Commercial grade reagents and aldehydes were used without further purification; catalyst 4 was prepared according to literature procedure.2

Determination of Absolute Configuration. The absolute configurations of the optically active compounds 3a,d,e and 9 were determined on the basis of the measured optical rotations that were compared with literature values. All other absolute configurations were assigned by analogy.

Experimental Procedures and Characterizations

General Procedure for the Organocatalytic Asymmetric Michael Reaction. In an ordinary vial equipped with a magnetic stirring bar, β-ketoester 1 (0.25 mmol) was added to a mixture of catalyst 4 (0.025 mmol, 10 mol%) and α,β-unsaturated aldehyde 2 (0.37 mmol) in the aqueous solution (0.5 mL). The stirring was maintained at room temperature until complete consumption of the β-ketoester. The crude reaction mixture was directly charged on silica gel and subjected to FC.

General Procedure for the Organocatalytic Asymmetric Synthesis of Cyclohexenones 3a-i. In an ordinary vial equipped with a magnetic stirring bar, β-ketoester 1 (0.25 mmol) was added to a mixture of catalyst 4 (0.025 mmol, 10 mol%), α,β-unsaturated aldehyde 2 (0.37 mmol). The stirring was maintained at room temperature until complete consumption of the β-ketoester. After addition of toluene (1 mL) and p-TSA (0.05 mmol, 20 mol%), the reaction was stirred at 80 °C for 16 h. The crude reaction mixture was directly charged on silica gel and subjected to FC.

(R)-tert-Butyl-2-acetyl-5-oxo-3-phenylpentanoate 5a. The title compound was isolated after FC (CH$_2$Cl$_2$/Et$_2$O: 99/1). The ee was determined on the relative compound 7. HRMS: C$_{18}$H$_{26}$NaO$_5$ – [M+Na$^+$+MeOH] calcld.: 345.1678, found: 345.1665. δ$_H$ (400 MHz; CDCl$_3$) (dr 6/1, major diasteromer) 1.13 (s, 9H), 2.26 (s, 3H), 2.72 (m, 2H), 3.81 (d, $J = 10.8$, 1H), 3.95 (ddd, $J = 10.8$, 9.08, 4.66, 1H), 7.41-7.13 (m, 5H), 9.58 (t, $J = 1.65$, 1H); δ$_C$ (100 MHz; CDCl$_3$) 27.3, 29.5, 38.9, 48.2, 66.4, 82.2, 127.3, 128.4, 128.6, 140.2, 166.6, 200.5, 202.1.

(R)-5-Oxo-3-phenylhexanal 7. The title compound was isolated after treatment of 5a (0.25 mmol) with 50% TFA in CH$_2$Cl$_2$ (0.5 mL). After 1 h reaction time the crude mixture was quenched with H$_2$O and extracted with CH$_2$Cl$_2$. Filtration on a silica pad afforded the pure product. The ee was determined by GC analysis on a Astec G-TA chiral stationary phase ($T_1 = 70 ^\circ C$; $T_2 = 165 ^\circ C$, rate = 10 °C/min; $T_3 = 165 ^\circ C$; $\tau_R = 16.5$ min, $\tau_S = 16.6$ min). $[\alpha]_D^{11}$ = -12.9 (c = 1.0, CH$_2$Cl$_2$, 94% ee). Spectroscopic data are in accordance with literature values.3

(R)-5-Methyl-cyclohex-2-enone 3a. The title compound was obtained following the general procedure and isolated after FC (CH$_2$Cl$_2$/Et$_2$O: 99/1) in 93% yield and 80% ee. [α]$_D^{\text{rt}}$ = -74.6 (c = 0.5, CHCl$_3$, 80% ee), lit.4 [α]$_D^{\text{rt}}$ = -91.0 (c = 0.8, CHCl$_3$). The ee was determined by GC analysis on an Astec G-TA chiral stationary phase (T$_1$ = 60 °C; T$_2$ = 70 °C, rate = 2 °C/min; T$_3$ = 90 °C, rate = 1 °C/min; $\tau$$_R$ = 20.7 min, $\tau$$_S$ = 21.6 min). Spectroscopic data are in accordance with literature values.5

(R)-5-Ethyl-cyclohex-2-enone 3b. The title compound was obtained following the general procedure and isolated after FC (CH$_2$Cl$_2$/Et$_2$O: 99/1) in 98% yield and 94% ee. [α]$_D^{\text{rt}}$ = -43.1 (c = 0.1, CHCl$_3$, 94% ee). The ee was determined by GC analysis on a Chromopak CP-Chirasil Dex CB-column (T$_1$ = 70 °C; T$_2$ = 200 °C, rate = 10 °C/min; $\tau$$_R$ = 6.8 min, $\tau$$_S$ = 6.9 min). Spectroscopic data are in accordance with literature values.6

(R)-5-iso-Propyl-cyclohex-2-enone 3c. The title compound was obtained following the general procedure and isolated after FC (CH$_2$Cl$_2$/Et$_2$O: 99/1) in 56% yield and 96% ee. [α]$_D^{\text{rt}}$ = -33.0 (c = 0.1, CHCl$_3$, 96% ee). The ee was determined by GC analysis on a Chromopak CP-Chirasil Dex CB-column (T$_1$ = 70 °C; T$_2$ = 200 °C, rate = 10 °C/min; $\tau$$_R$ = 7.8 min, $\tau$$_S$ = 7.9 min). δ$_H$ (400 MHz; CDCl$_3$) 0.92 (d, J = 2.0, 3H), 0.94 (d, J = 2.0, 3H), 1.60 (m, 1H), 1.94-1.84 (m, 1H), 2.08-2.20 (m, 2H), 2.44-2.36 (m, 1H), 2.49-2.53 (m, 1H), 6.02 (m, 1H), 7.00 (ddd, J = 10.0, 6.0, 2.4, 1H); δ$_C$ (100 MHz; CDCl$_3$) 19.4, 19.5, 29.6, 32.0, 41.5, 41.9, 129.5, 150.5, 200.7.

(R)-5-Butyl-cyclohex-2-enone 3d. The title compound was obtained following the general procedure and isolated after FC (CH$_2$Cl$_2$/Et$_2$O: 99/1) in 69% yield and 92% ee. [α]$_D^{\text{rt}}$ = -44.9 (c = 0.5, CHCl$_3$, 92% ee), lit.7 [α]$_D^{\text{rt}}$ = -51.2 (c = 1.4,

CHCl₃. The ee was determined by GC analysis on a Chromopak CP-Chirasil Dex CB-column (T₁ = 70 °C; T₂ = 120 °C, rate = 5 °C/min; T₃ = 136 °C, rate = 2 °C/min; τᵣ = 15.8 min, τₛ = 15.9 min). Spectroscopic data are in accordance with literature values.⁸

(R)-5-Phenylcyclohex-2-enone 3e. The title compound was obtained following the general procedure and isolated after FC (hexane/Et₂O: 80/20) in 63% yield and 94% ee. The ee was determined on the parent compound 7. [α]ᵣ⁰D = -39.5 (c = 1.0, CHCl₃, 94% ee), lit.⁹ [α]ᵣ⁰D = -43.0 (c = 1.25, CHCl₃). Spectroscopic data are in accordance with literature values.¹⁰

(R)-5-(4-Fluorophenyl)cyclohex-2-enone 3f. The title compound was obtained following the general procedure and isolated after FC (hexane/AcOEt: 85/15) in 65% yield and 95% ee. The ee was determined by HPLC analysis on 2 Daicel Chiralpak AD columns in a row (hexane/i-PrOH: 95/5, flow 0.8 mL/min; τₛ = 24.1 min, τᵣ = 25.0 min). [α]ᵣ⁰D = -29.1 (c = 1.0, CHCl₃, 95% ee). HRMS: C₁₂H₁₁FNaO - [M+Na⁺] calcd.: 213.0692, found: 213.0692. δH (400 MHz; CDCl₃) 2.40-2.75 (m, 4H), 3.27-3.39 (m, 1H), 6.12 (dd, J = 10.1, 2.75, 1H), 7.15-7.23 (m, 2H), 6.97-7.07 (m, 3H); δC (100 MHz; CDCl₃) 33.7, 40.2, 44.9, 115.5 (d, J = 21.3), 128.1 (d, J = 8.3), 129.8, 138.8 149.3, 161.6 (d, J = 246.9), 198.9.

(R)-5-m-Tolylcyclohex-2-enone 3g. The title compound was obtained following the general procedure and isolated after FC (hexane/AcOEt: 90/10) in 72% yield and 94% ee. The ee was determined by HPLC analysis on 2 Daicel Chiralpak AD columns in a row (hexane/i-ProOH: 98/2, flow 0.5 mL/min; τᵣ = 29.7 min, τₛ = 30.7 min). [α]ᵣ⁰D = -34.2 (c = 0.5, CH₂Cl₂, 94% ee). HRMS: C₁₃H₁₄NaO - [M+Na⁺] calcd.: 209.0942, found: 209.0947. δH (400 MHz; CDCl₃) 2.36 (s, 3H), 2.46-2.82 (m, 4H), 3.26-3.37 (m, 1H), 6.05-6.24 (m, 1H), 7.00-7.13 (m, 4H), 7.24 (t, J = 7.07, 1H); δC (100 MHz; CDCl₃) 21.4. 33.7, 40.9, 44.9, 123.6, 127.4, 127.8, 128.6, 129.7, 134.3, 143.1, 149.6, 199.3.

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

(R)-5-Ethyl-2-methyl-cyclohex-2-enone 3h. The title compound was obtained following the general procedure and isolated after FC (hexane/Et$_2$O: 80/20) in 82% yield and 91% ee. [α]$_{D}^{20}$ = -66.0 (c = 0.1, CHCl$_3$). The ee was determined by HPLC analysis on a Daicel Chiralpak AD column at 0 °C (hexane/i-PrOH: 99/1, flow 0.5 mL/min; τ_R = 14.5 min, τ_S = 16.3 min). δH (400 MHz; CDCl$_3$) 0.91 (t, J = 7.2, 3H), 1.37 (m, 2H), 1.70 (s, 3H), 1.77-2.14 (m, 3H), 2.24-2.32 (m, 1H), 2.56 (m, 1H), 6.71 (dd, J = 2.6, 1.4 Hz, 1H); δC (100 MHz; CDCl$_3$) 11.0, 15.8, 28.5, 32.2, 37.3, 44.3, 135.5, 145.0, 200.42.

(R)-2,5-Diethylcyclohex-2-enone 3i. The title compound was obtained following the general procedure isolating the intermediate Michael adduct; the title compound was purified by FC (Et$_2$O/pentane: 1/10) in 74% overall yield and 89% ee. The ee was determined by GC analysis on an Astec G-TA chiral stationary phase (T$_1$ = 70 °C; T$_2$ = 100 °C, rate = 10 °C/min; T$_3$ = 100 °C, time = 8 min; T$_4$ = 180 °C, rate = 10 °C/min; τ_R = 14.2 min, τ_S = 14.4 min). [α]$_{D}^{20}$ = -10.1 (c = 1.0, CHCl$_3$, 89% ee). HRMS: C$_{10}$H$_{16}$NaO - [M+Na$^+$] calcd.: 175.1099, found: 175.1093. δH (400 MHz; CDCl$_3$) 0.91 (t, J = 7.46, 3H), 1.00 (t, J = 7.46, 3H), 1.33-1.47 (m, 2H), 1.88-2.15 (m, 3H), 2.14-2.27 (m, 2H), 2.37-2.48 (m, 1H), 2.49-2.59 (m, 1H), 6.62-6.72 (m, 1H); δC (100 MHz; CDCl$_3$) 11.1, 12.8, 22.2, 28.6, 32.2, 37.2, 44.6, 140.9, 143.3, 199.9.

Synthesis of (2S,4S)-1-benzyl-2-methyl-4-phenylpiperidine 9. In an ordinary vial equipped with a magnetic stirring bar, β-ketoester 1a (0.25 mmol) was added to a mixture of catalyst 4 (0.025 mmol, 10 mol%) and α,β-unsaturated aldehyde 2 (0.37 mmol). After 5 h CH$_2$Cl$_2$ (0.5 mL) and TFA (0.5 mL) were added and the stirring was maintained for 1 h. The reaction was quenched with NaHCO$_3$, extracted with AcOEt, dried over MgSO$_4$ and evaporated. The crude reaction mixture was transferred to an ordinary vial equipped with a magnetic stirring bar and MeOH, NaBH$_3$CN (0.75 mmol, 3 equiv.) and benzylamine (1M in MeOH, pH \approx6-7; 0.37 mmol, 1.5 equiv.) were added. After 5 min NaBH$_3$CN (0.125 mmol, 0.5 equiv.) was added and the stirring was maintained for 20 h until GC/MS showed the reaction to be complete. The reaction was quenched with NH$_4$Cl, extracted with AcOEt, dried over MgSO$_4$ and...
evaporated. The title compound was purified by FC (hexane/AcOEt: 90/10) in 46% overall yield, dr >20:1 and 94% ee. The ee was determined on the parent compound 7. \([\alpha]_{\text{D}}^1 = -57.2 \ (c = 1.0, \text{CH}_2\text{Cl}_2, \ 94\% \text{ ee})\). HRMS: C_{19}H_{24}N - [M+H^+] calcd.: 266.1909, found: 266.1919. \(\delta_{\text{H}}\) (400 MHz; CDCl\(_3\)) 1.29 (d, J = 6.1, 3H), 1.52-1.91 (m, 4H), 2.08 (dt, J = 11.6, 3.4, 1H), 2.31-2.46 (m, 1H), 2.51-2.68 (m, 1H), 2.95 (td, J = 11.6, 3.4, 1H), 3.21 (d, J = 13.3, 1H), 4.18 (d, J = 13.3, 1H), 7.45-7.14 (m, 10H); \(\delta_{\text{C}}\) (100 MHz; CDCl\(_3\)) 21.4, 33.3, 42.9, 43.0, 53.2, 57.1, 58.1, 126.0, 126.7, 126.8, 128.1, 128.3, 129.2, 139.1, 146.4.

Determination of relative configuration of the compound 9. (2S,4S)-1-benzyl-2-methyl-4-phenylpiperidine 9 (0.12 mmol) was subjected to hydrogenation on 10% Pd/C, in i-PrOH (2 mL) and catalytic amount of AcOH under an atmosphere of 70 psi H\(_2\), for 30 h. The reaction was filtered, washed with K\(_2\)CO\(_3\) (aq.), dried over MgSO\(_4\) and evaporated. Toluene (0.8 mL) and HCl (37% aq, 0.18 mmol, 1.5 equiv.) were added. The stirring was maintained at rt for 0.5 h and then the solution was kept at 5 °C for 6 h without stirring. The precipitate was filtered off and washed with cold toluene. Comparison of the spectroscopic data with literature values\(^{11}\) gave the cis-relative configuration.