Synthetic aspects; numbering follows the main manuscript.

Synthesis of triflate (7)

A Schlenk tube was charged with 2-bromo-4,5-difluorophenol (1.64 ml, 3g, 1.44·10⁻² mol) under nitrogen and 9 ml of pyridine. The stirred solution is cooled to 0º C and then trifluoromethanesulfonic anhydride, 2.67 ml, is added very slowly through the rubber stopper via a syringe. The temperature is maintained at 0º C for 5 min and then allowed to warm to room temperature and stirred overnight (20-25 h).

The resulting mixture was poured into water and extracted with ethyl ether. The ether extract (upper phase) was washed sequentially with water, 10% aqueous hydrochloric acid solution (2x), water, and a concentrated sodium chloride solution, dried (MgSO₄), and concentrated to yield an oil. Chromatography (flash column, petroleum spirit 40-60ºC / EtOAc, 20:1) and solvent removing (rotavapor, 40º C, high vacuum, 3h, to remove all the EtOAc) afforded the desired product, 7, as a colourless liquid (3.2 g, 65%)

1H-NMR (CDCl₃, 400 MHz) δ ppm: 7.56 (t, J=8.46, 8.46 Hz, 1H); 7.28 (dd, J=6.85, 9.51 Hz, 1H). 13C{1H}-NMR (CDCl₃, 101 MHz) δ ppm: 149.5 (dd, 3JFC=12.9, 1JFC=256.1 Hz, 1C, C-F); 149.3 (dd, 3JFC=13.6, 1JFC=254.8 Hz, 1C, C-F); 142.4 (dd, 3JFC=3.9, 8.2 Hz, 1C, C-OTf); 122.3 (d, 2JFC =21.4 Hz, 1C, C-H); 118.5 (q, 1JFC=320.8 Hz, 1C, CF₃); 112.8 (d, 2JFC=21.9 Hz, 1C, C-H); 110.8 (dd, J=4.6, 7.5 Hz, 1C, C-Br).

19F{1H}-NMR (CDCl₃, 377 MHz) δ ppm: -72.9 (s, 3F, CF₃); -131.5 (d, 3JFF=21.3 Hz, 1F, C-F); -132.3 (d, 3JFF=21.3 Hz, 1F, C-F).

MS CI+(m/z) Found 339.8801 ([M]+) ; C₇H₂BrF₅O₂S requires 339.8828.

Triflate (2) was prepared similarly from 3-bromophenol as a light-coloured oil ; MS CI+(m/z) Found 339.8801 ([M]+) ; C₇H₂BrF₅O₂S requires 339.8828.

Catalytic Experiments

All the catalytic experiments were carried out under nitrogen in Schlenk tubes. Products were analyzed by 19F NMR and GC-MS spectroscopy.

Suzuki reaction

In a typical experiment, a Schlenk tube was charged with 4-methoxyphenylboronic acid (47 mg, 0.308 mmol, 5% excess), K$_3$PO$_4$ (124.4 mg, 0.586 mmol), LiBr (25 mg, 0.293 mmol) and PdCl$_2$(PPh$_3$)$_2$ (11 mg, 0.0147 mmol, 5% molar to aryl halide). Then, the schlenk tube was evacuated and refilled with nitrogen three times. Afterwards, it was charged with aryl halide-triflate (7) (100 mg, 0.293 mmol) under a nitrogen atmosphere and 3 ml of toluene and then heated at reflux temperature overnight (22 h). The resulting mixture was cooled and then filtered. Finally, the crude was analyzed by 19F NMR and GC/MS.

Suzuki double-coupling experiments

In the first experiment, previous procedure was followed but the amount of aryl halide-triflate (7) was halved to ensure (1:2) molar rate with regard to the boronic acid (50 mg, 0.147 mmol). 4-methoxyphenylboronic acid (47 mg, 0.308 mmol, 5% excess), K$_3$PO$_4$ (124.4 mg, 0.586 mmol) and PdCl$_2$(PPh$_3$)$_2$ (11 mg, 0.0147 mmol, 5% molar to aryl halide).

Kumada reaction

In a typical experiment, a Schlenk tube was charged with PhMgBr (0.117 mL, 3M solution, 0.352 mmol, 20% excess), LiBr (26 mg, 0.293 mmol) and PdCl$_2$(PPh$_3$)$_2$ (11 mg, 0.0147 mmol, 5% molar to aryl halide). Then, the Schlenk tube was evacuated and refilled with nitrogen three times. Afterwards, it was charged with aryl halide-triflate (7) (100 mg, 0.293 mmol) under a nitrogen atmosphere and 3 ml of toluene and then heated
at reflux temperature overnight (22 h). The resulting mixture was cooled and then filtered. Finally, the crude was analyzed by 19F NMR and GC/MS.

Heck reaction

In a typical experiment, a Schlenk tube was charged with sodium carbonate (47 mg, 0.440 mmol), dppp (12 mg, 0.0293 mmol, 10% molar to aryl halide) and Pd$_2$(dba)$_3$ (13 mg, 0.0147 mmol, 5% molar to aryl halide). Then, the Schlenk tube was evacuated and refilled with nitrogen three times. Afterwards, it was charged with 3 ml of toluene, butyl acrylate (56 mg, 0.440 mmol) and aryl halide-triflate (7) (100 mg, 0.293 mmol), both through a rubber septum under a nitrogen atmosphere and then the mixture was heated at reflux temperature overnight (22 h). The resulting mixture was cooled and then filtered. Finally, the reaction was analyzed by 19F NMR and GC/MS.

Amination

In a typical experiment, a Schlenk tube was charged with sodium tert-butoxide (39 mg, 0.410 mmol), dppp (6 mg, 0.0150 mmol, 10% molar to aryl halide) and Pd$_2$(dba)$_3$ (6.7 mg, 0.0073 mmol, 5% molar to aryl halide). Then, the Schlenk tube was evacuated and refilled with nitrogen three times. Afterwards, it was charged with 3 ml of toluene, morpholine (31 mg, 0.352 mmol) and aryl halide-triflate (7) (100 mg, 0.293 mmol), both through a rubber septum under a nitrogen atmosphere and then the mixture was heated at 80º C (22 h). The resulting mixture was cooled and then filtered. Finally, the crude was analyzed by 19F NMR and GC/MS.

(8) C$_{14}$H$_9$O$_4$F$_5$S GC-MS Cl^+(m/z): calcd for ([M + NH$_4$]$^+$): 368.0142, found: 368.0147; 19F-1H-1NMR (377 MHz, CDCl$_3$) δ ppm: -73.8 (s, 3F, CF$_3$); -134.8 (d, 3J$_{FF}$ = 21.8 Hz, 1F, C-F); -136.0 (d, 3J$_{FF}$ = 21.8 Hz, 1F, C-F).

(9) C$_{13}$H$_9$BrF$_2$O GC-MS Cl^+(m/z): calcd for ([M]$^+$): 297.9805, found: 297.9798; 19F-1H-1NMR (377 MHz, CDCl$_3$) δ ppm: -137.7 (d, 3J$_{FF}$ = 21.3 Hz, 1F); -138.8 (d, 3J$_{FF}$ = 20.9 Hz, 1F) (minor product).
(10) C_{20}H_{16}O_{2}F_{2} \text{ GC-MS CI+ (m/z): calcd for ([M]^+): 326.1118, found: 326.1117; }\text{^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -140.9 (s, 2F, C-F) (minor product).}

(11) C_{13}H_{7}O_{3}F_{5}S \text{ GC-MS CI+ (m/z): calcd for ([M]^+): 338.0036, found: 338.0031; }\text{^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -73.4 (s, 3F, CF}_3\text{); -133.0 (d, }^3J_{FF} = 21.8 \text{ Hz, 1F, C-F); -149.1 (dd, } J = 253.9, 14.2 \text{ Hz, C-F, 1C); 141.3 (dd, } J = 8.2, 3.3 \text{ Hz, C-OTf, 1C); 134.8 (t, } J = 6.3, 6.3 \text{ Hz, C-Ph, 1C); 133.9 (s, C^i\text{-Ph, 1C); 129.3 (s, C^o\text{-Ph, 2C); 129.0 (s, C^p\text{-Ph, 1C); 128.8 (s, C^s\text{-Ph, 2C); 119.7 (d, } J = 19.2 \text{ Hz, C-H, 1C); 118.3 (q, } J = 320.7, 320.7, 320.6 \text{ Hz, CF}_3\text{, 1C); 112.3 (d, } J = 21.1 \text{ Hz, C-H, 1C).}

(12) C_{13}H_{7}O_{3}F_{5}S \text{ }^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -137.1 (d, }^3J_{FF} = 21.7 \text{ Hz, 1F, C-F); -138.6 (d, }^3J_{FF} = 21.7 \text{ Hz, 1F, C-F) (minor product).}

(13) C_{18}H_{12}F_{2} \text{ GC-MS CI+ (m/z): calcd for ([M]^+): 266.0907, found: 266.0909; }\text{^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -140.2 (s, 2F, C-F).}^{3}

(15) C_{10}H_{10}BrF_{2}NO \text{ GC-MS CI+ (m/z): calcd for ([M]^+): 276.9914, found: 276.9904; }\text{^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -135.5 (d, }^3J_{FF} = 21.9 \text{ Hz, 1F, C-F); -141.1 (d, }^3J_{FF} = 21.9 \text{ Hz, 1F, C-F).}

(16) C_{13}H_{13}BrF_{2}O_{2} \text{ GC-MS CI+ (m/z): calcd for ([M+H]^+): 319.0145, found: 319.0134; }\text{^{19}F\{^1H\}-NMR (377 MHz, CDCl}_3\text{) }\delta \text{ ppm: -131.5 (d, }^3J_{FF} = 22.2 \text{ Hz, 1F, C-F); -136.6 (d, }^3J_{FF} = 22.2 \text{ Hz, 1F, C-F).}