Supplementary Information for:

Starch-assisted synthesis of polypyrrole nanowires by a simple electrochemical approach

Wei Shi, Pengfei Liang, Dongtao Ge, Jixiao Wang and Qiqing Zhang

*Biomedical Engineering Research Center, Medical College, Xiamen University, Xiamen 361005, P. R. China.
Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.

Fig. S1. SEM images of PPy nanowires synthesized with different concentrations of pyrrole: (a) [pyrrole] = 0.06 M, (b) [Pyrrole] = 0.10 M, (c) [Pyrrole] = 0.14 M, (d) [Pyrrole] = 0.22 M. The concentration of starch is 0.020 wt.%.

S1
Fig. S2. SEM images of PPy nanowires synthesized with different concentrations of soluble starch: (a) 0.004 wt.%, (b) 0.008 wt.%, (c) 0.016 wt.%, (d) 0.020 wt.%. The concentration of pyrrole is 0.14 M.
Fig. S3. FTIR spectra of (a) PPy nanowires, (b) cauliflower-like PPy synthesized in the absence of starch, and (c) soluble starch.
Fig. S4. X-ray photoelectron spectrum (XPS) of PPy nanowires.
Fig. S5. Cyclic voltammograms of PPy nanowires (——) and cauliflower-like PPy (----) in 0.15 M NaCl solution at scan rate of 25 mV S$^{-1}$.
Fig. S6. X-ray diffraction pattern of PPy nanowires synthesized in the presence of soluble starch.